Exam ID.				
----------	--	--	--	--

DAV PUBLIC SCHOOLS,ODISHA ZONE –I PA-II EXAMINATION, 2021-22

• Check that this question paper contains 7 printed pages.

- Set number given on the right hand side of the question paper should be written on the OMR SHEET by the candidate.
- Check that this question paper contains 50 questions.

Class-XII SUB : MATHEMATICS(041)

Time : 90 Minutes

Maximum Marks: 40

General Instructions:

1. This question paper contains three sections – A, B and C. Each part is compulsory.

- 2. Section A has 20 MCQs, attempt any 16 out of 20.
- 3. Section B has 20 MCQs, attempt any 16 out of 20.
- 4. Section C has 10 MCQs, attempt any 8 out of 10.
- 5. There is no negative marking
- 6. All questions carry equal marks.

<u>SECTION – A</u>

(Section A consists of 20 questions of each 1mark weightage. Any 16 questions are to be attempted. The first attempted 16 questions would be evaluated.)

1

Q1. Find the principal value of

$$\cos^{-1}\left(\frac{-1}{2}\right) + \sec^{-1}\left(\frac{-2}{\sqrt{3}}\right)$$

A) $\frac{\pi}{2}$ B) π C) $\frac{3\pi}{2}$ D) 2π

Q2.	Let f be defined on [-5, 5] as			1	
	$f(x) = \begin{cases} x, \text{ if } x \text{ is rational} \\ x \text{ if } x \text{ is rational} \end{cases}$				
	(-x, if x is irration)				
	then $f(x)$ is	at w=0			
	B) discontinuous at every x excep	cent $x=0$			
	C) continuous everywhere				
	D) discontinuous everywhere.				
Q3.	If $A = [a_{ij}]_{nxn}$ and $a_{ij} = i^2 - j^2$ then	A is			
	A) Unit matrix	B) Sym	metric matrix	1	
	C) Skew symmetric matrix	D) Null	D) Null matrix		
Q4.	Find the values of x and y resp	ectively su	ch that		
	$\begin{bmatrix} x-y & 3\\ 2x-y & 2x+1 \end{bmatrix} = \begin{bmatrix} 5 & 3\\ 12 & 15 \end{bmatrix}$			1	
	A) 2,7 B) 3,4	C) 7,2	D) 4,3		
Q 5.	If $f(x) = x^3 - 6x^2 + 9x + 3$ be a decree	easing func	tion then x lies in	1	
	A) $(-\infty, -1) \cap (3, \infty)$ B) $(1, 3)$ C	C) (3,∞)	D) None of these	1	
Q 6.	If A, B, C are square matrices	of order 3	such that $ A =3$, $ B =-1$,		
	C = 2, then $ 2ABC $ is			1	
	A) 48 B)-48	C) -12	D) 436		
Q7.	Let R be a relation defined on the set Z of all integers such that $xRy \Leftrightarrow x + 2y$ is divisible by 3. Then				
	A) R is transitive only.	B) R is	symmetric only.		
	C) R is an equivalence relation	n D) R is	not an equivalence relation		
Q 8.	If $xy = e - e^y$ then $\frac{dy}{dx}\Big _{x=0} =$			1	
	A) $\frac{1}{e}$ B) $\frac{1}{e^2}$	C) $\frac{-1}{e}$	D) None of these		

Q 9.	The slope of the normal to the curve $x = a \sin t$, $y = a \left(\cos t + \log \tan \frac{t}{2} \right)$	1
	at the point 't' isA) tan tB) - tan tC) cot tD) -cot t	
Q10.	The value of x which satisfies the equation $\tan^{-1} x = \sin^{-1} \left(\frac{3}{\sqrt{10}} \right)$ is	1
	A) $\frac{1}{3}$ B) $\frac{1}{2}$ C) 3 D) None of these	
Q11.	The number of equivalence relations on the set $A = \{1,2,3\}$ containing	1
	(1,3) and (3,1) is A) 1 B) 2 C) 3 D) 5	I
Q12.	The values of x for which $\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = 0$ are	1
Q13.	A) -1,12 B) -3,5 C) -2,-14 D) None of these If A and B are square matrices such that $AB = B$ and $BA = A$ then $A^2 + B^2$ is always equal to	1
Q14.	A + B is always equal to A) 2AB B) 2BA C) A + B D) AB A curve is represented parametrically by the equations	
	$x = 4t^{3} + 3$, $y = 4 + 3t^{4}$, then $\frac{d^{2}x}{dy^{2}}$ is	1
Q15.	A) $\frac{1}{t}$ B) $\frac{1}{12t^5}$ C) I D) None of these If $A = \begin{bmatrix} 0 & 1 & -1 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{bmatrix}$ then $(A(adjA)A^{-1})A$ equals to	1
	A) $2\begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ B) $\begin{bmatrix} -6 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & -6 \end{bmatrix}$	
	C) $\frac{1}{6} \begin{bmatrix} 0 & 1 & -1 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{bmatrix}$ D) None of these	
Q16.	If $y = 4x - 6$ is a tangent to the curve $y^2 = ax^4 + b$ at (3,6),then A) $a = \frac{4}{9}, b = \frac{-4}{9}$ B) $a = 0, b = \frac{4}{9}$ C) $a = \frac{4}{9}, b = 0$ D) None of these	1
Q 17.	If $y = e^{\frac{1}{2}\log(1+\tan^2 x)}$ then $\frac{dy}{dx}$ is equal to (A) $\frac{1}{2} \cos^2 x$ (B) $\sec^2 x$ (C) $\cos x \tan x$ (D) $\log(\cos x + \tan x)$	1
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	

PA-II/MATH-XII/SET-3

Page 3 of 7

Q18.	$\mathbf{If} \begin{vmatrix} x & \sin\theta & \cos\theta \\ -\sin\theta & -x & 1 \\ \cos\theta & 1 & x \end{vmatrix}$	= 8, then value of	x is D)-4		1
Q19.	$\mathbf{H} = \frac{1}{2} \mathbf{H} = \frac{1}{2} \mathbf{H}$	+x has extreme va a and b are	lues at $x = -1$ a	nd	1
	A) a= -1 ,b=2 C) a=0 , b=2	B) a=2, l D) a=2 ,	b = -1 $b = \frac{-1}{2}$		
O 20.	The linear program	nming problem, T	o minimize $Z = 1$	3x + 2y	
	Subject to constrain A) One solution C) Two solutions	ts $x + y ≥ 8,3x + 5y = B$) No D) In	$\leq 15, x \geq 0$ and $y \geq 0$ of feasible region finitely many solution	⁰ has	
(Sec qเ	ction B consists of 20 o uestions are to be atte	<u>SECTION -</u> questions (21 – 40) empted. The first a evaluated	<u>– B</u>) of each 1mark attempted 16 qu .)	weightage. An estions would	y 16 be
0.21	If $A = \{1, 2, 3, 4\}$, $B = \{a, b, c, b, c, c,$	$\{b,c\}$ then the num	ber of functions	from A to B	1
Q21	which are not surje A) 8	ective is B) 24	C) 45	D) 36	I
Q22.	If $y = \sqrt{\sin x + y}$ then	$\frac{dy}{dx}$ is equal to			1
	A) $\frac{\cos x}{2y-1}$	B) $\frac{\cos x}{1-2y}$	C) $\frac{\sin x}{1-2y}$	D) $\frac{\sin x}{2y-1}$	
Q23.	Corner points of the linear constraints an Let Z = px+qy, whe minimum of Z occu (A) p = 2q	e feasible region d re (0, 3), (1, 1) and re p, q > 0. Condit rs at (3, 0) and (1, (B) 2p = q	etermined by th (3, 0). tion on p and q s 1) is (C) p = 3q	e system of so that the (D) p = q	1
Q24.	The derivative of	$\cos^{-1}(2x^2-1)$ w.r.t. co	$bs^{-1} x is$		1
	(A) 2	(B) $\frac{-1}{2\sqrt{1-x^2}}$	(C) 2 x	(D) $1 - x^2$	1
Q25.	If $A = \begin{bmatrix} 4 & 3 \\ 5 & -4 \end{bmatrix}$ and A	$A^{-1} = kA$, then 'k'	is equal to		1
	(A) $\frac{-1}{31}$	(B) $\frac{1}{31}$	(C) 1	(D) None	
Q26.	The function $f(x) =$ is an increasing func- (A) $\left(0, \frac{\pi}{2}\right)$	$\tan^{-1}(\sin x + \cos x)$ ction in $(B)\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$	(C) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$	(D) $\left(\frac{-\pi}{2}\frac{\pi}{4}\right)$	1
	~ /	```'		. ,	

PA-II/MATH-XII/SET-3

Page 4 of 7

Q27.	Express in simplest form $\tan^{-1}\left(\frac{\cos x}{1+\sin x}\right)$	1			
	A) $\frac{\pi}{4} - \frac{x}{2}$ B) $\frac{\pi}{4} + \frac{x}{2}$ C) $\frac{x}{2}$ D) $\frac{\pi}{4} - x$				
Q28.	If matrix $A = \begin{bmatrix} 0 & 2b & -2 \\ 3 & 1 & 3 \\ 3a & 3 & -1 \end{bmatrix}$ is a symmetric matrix, then the values of	1			
	a and b are				
	A) $a = \frac{-2}{3}, b = \frac{3}{2}$ B) $a = \frac{2}{3}, b = \frac{-3}{2}$				
030	C) $a=2$, $b=-3$ D) none of these				
Q29.	Maximum slope of the curve $y = -x^2 + 3x^2 + 9x^2 - 27^2$ is	1			
030	A = D = D = D = D = D = D = D = D = D =	-			
Q30.	The relation K in the set of natural numbers is defined as $R = \{(x, y): y = x + 7 \text{ and } x < 5\}$	1			
	A) Reflexive B) Symmetric	-			
	C) Transitive D) Equivalence relation				
0.21	$\begin{bmatrix} 1 & 3 & \lambda + 2 \end{bmatrix}$	1			
Q 31.	The value of λ for which the matrix $A = \begin{bmatrix} 2 & 4 & 8 \\ 2 & 5 & 10 \end{bmatrix}$ is singular is	I			
	A) 3 B) 5 C) -4 D) 4				
Q32.	If $f(x) = \begin{cases} \frac{\tan 5x}{x^2 + 2x}, x \neq 0\\ k + \frac{1}{2}, x = 0 \end{cases}$ is continuous at x=0, then the value of k is	1			
	A) 1 B) -2 C) 3 D)2				
Q 33.	The profit function P which yields the values 61 and 57 at (4, 7) and (5,6) respectively is				
	A) $2x+5y$ B) $7x+3y$ C) $5x+2y$ D) $3x+7y$	1			
034	The point of the parabola $y^2 = 64x$ which is prevent to the line				
Q 0	4x + 3y + 35 = 0 is				
	A) (9,-24) B) (1,81) C) (4,16) D) (-9,-24)				
Q 35.	Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$ and $f(x) = x^2 + x - 1$ then $f(A)$ is	1			
	$\mathbf{A})\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \qquad \mathbf{B})\begin{bmatrix} 0 & 3 \\ 3 & 6 \end{bmatrix}$				
0.5.5	C) $A = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$ D) $A = \begin{bmatrix} 3 & 0 \\ 3 & 6 \end{bmatrix}$				
Q36.	The domain of the function $f(x) = \sin^{-1} \sqrt{x} - 1$ is	1			
	A) [1,2] B) [-2,1] C) [-1,1] D) [0,1]	1			

PA-II/MATH-XII/SET-3

Page 5 of 7

O 37. The greatest integer function $f: R \to R$ given by f(x) = [x] is 1 B) surjective C) bijective D) None of these A) injective The total number of matrices of order 2x3 whose each entry is 0 or Q 38. 1 2 is C) 64 B) 36 D) 32 A) 12 If the curve $ay + x^2 = 7$ and $x^3 = y$ cut orthogonally at (1,1) then the Q39. 1 value of 'a'is C) -6 B) 0 D) 6 A) 1 If $P = \begin{bmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}$ is the adjoint of a square matrix B of order 3 and Q 40. 1 |B| = 4 then α is equal to B) 6 C) 9 A) 4 D) 11 **SECTION – C**

(Section C consists of 10 questions of each 1mark weightage. Any 08 questions are to be attempted. Questions 46 - 50 are based on a Case- Study. The first attempted 08 questions would be evaluated.)

Q41. If A is a square matrix such that A²=I and (A+I)³+(A-I)³=kA+mI where I will be the identity matrix then the 1 values of k ,m are

Q42. The absolute maximum value of the function f given by $f(x) = 12x^{\frac{4}{3}} - 6x^{\frac{1}{3}}, x \in [-1,1]$ is A) 18 B) 16 C) 14 D) $\frac{1}{8}$

Q 43 The tangent to the curve $y = e^{2x}$ at the point (0,1) meets X-axis at A) (0,1) B)(-0.5,0) C) (2,0) D) (0,2)

- Q44. In a linear programming problem, the constraints in the decision variable x and y are $x + y \le 6, x + 3y \ge 9, x \ge 0, y \ge 0$. Corner points of 1 feasible regions are
 - A) (0,3),(0,0),(6,0)B) $\left(\frac{9}{2},\frac{3}{2}\right),(9,0),(6,0)$ C) $\left(\frac{9}{2},\frac{3}{2}\right),(0,3),(0,6)$ D) None of these

- Q45. Corner points of the feasible region for a LPP are (3,0), (0,2), (6,0)(6,8)and (0,5). Let E = 4x + 6y be the objective function. The minimum 1 value of E occurs at
 - A) $(0,2)_{only.}$ B) $(3,0)_{only.}$
 - C) the mid point of the line segment joining the points (0,2) and (3,0) only.
 - D) any point on the line segment joining the points (0,2) and (3,0)

CASE STUDY

A western music concert is organised every year in the stadium that can hold 36,000 spectators with a ticket price of RS. 10, the average attendance has been 24,000. Some financial expert estimated that price of the ticket should be determined by the function $p(x) = 15 - \frac{x}{3000}$ where 'x' is the number of tickets sold.

Based on the above information, answer the following questions Q46. The revenue *R* as a function of *x* can be represented as

-	A) $15 - \frac{x^2}{3000}$		B) 15 <i>x</i> -	$-\frac{x^2}{3000}$	
	C) $15x - \frac{1}{30000}$		D) 15 <i>x</i> –	$\frac{x}{3000}$	
Q 47.	The range of x is				
-	A) [24000,36000]		B)[0,2400	00]	1
	C) [0,36000]		D)None	of these	
Q48.	The number of spect	pectators to be present to maximise the revenue is			
	A) 22500	B) 21000	C)20000	D) 25000	1
o 10					
Q 49.	When revenue is maximum, the price of the ticket in Rupees is				
	A) 5	B) 5.5	C) 7	D) 7.5	1

Q50. The maximum revenue in Rupees is A) 215000 B) 156500 C) 168750 D) 225000 1

1