DAV PUBLIC SCHOOLS, ODISHA ZONE

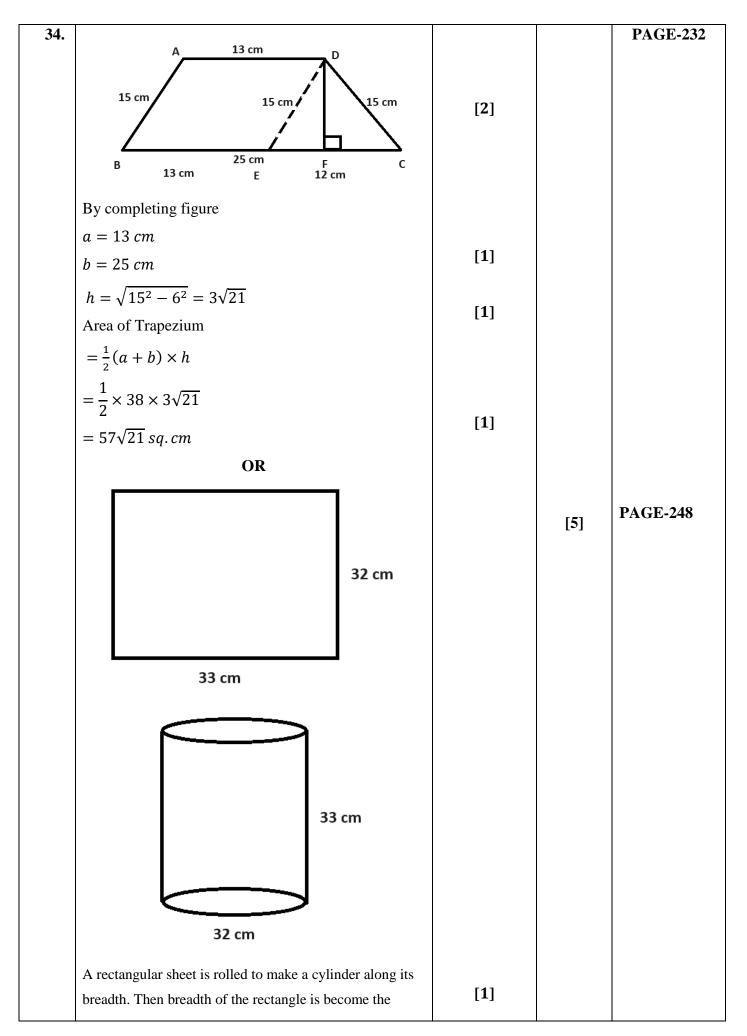
PA-II EXAMINATION, [2023-24]

SUBJECT: MATHEMATICS CLASS: VIII

MARKING SCHEME

SL NO	VALUE POINTS	Marks Allotted to each value Point / Key Points	Total Marks	PAGE NO. OF NCERT/ TEXTBOOK
1.	C.46	[1]	[1]	PAGE-22
2.	A.10	[1]	[1]	PAGE-23
3.	D. (xy) remains constant	[1]	[1]	PAGE-64
4.	C.8	[1]	[1]	PAGE-64
5.	A.5%	[1]	[1]	PAGE-79
6.	C.4	[1]	[1]	PAGE-125
7.	C. (0,-2)	[1]	[1]	PAGE-216
8.	C.4 units	[1]	[1]	PAGE-226
9.	B.8 m	[1]	[1]	PAGE-231
10.	B.Volume of the cylinder will remain unchanged.	[1]	[1]	PAGE-248
11.	a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).	[1]	[1]	PAGE-5
12.	d) Assertion (A) is false but reason (R) is true.	[1]	[1]	PAGE-164
13.	a) B. Alternate exterior Angle	[1]	[1]	PAGE-164
	b) D. 90°	[1]	[1]	
	c) $y = 130^{\circ}$, $p = 50^{\circ}$	[1] [1]		
	OR $x = 130^{\circ},$ $m = 130^{\circ}$	[1] [1]	[2]	
14.	a) C.3.5 m	[1]	[1]	PAGE-248
	b) B.770 cu.m volume of earth that will be dug out $= \pi r^2 h$ $= \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 20$ $= 770 \ cubic \ m$	[1]	[1]	
	Let Height of platform is h m ATQ, $22 \times 14 \times h = 770$ $\Rightarrow h = \frac{770}{22 \times 14}$ $= 2.5 m$	$[\frac{1}{2}]$ $[\frac{1}{2}]$ [1]	[2]	

	OR			
	CSA of the well $= 2\pi rh$ $= 2 \times \frac{22}{7} \times \frac{7}{2} \times 20$ $= 440 \text{ sq. cm}$ $3750 = 2 \times 3 \times 5^{4}$	$ \begin{bmatrix} \frac{1}{2} \\ [\frac{1}{2}] \\ [1] \end{bmatrix} $ [1]		
15.	If we will multiply $2 \times 3 = 6$ with 3750 then the product will be a perfect square.	[1]	[2]	PAGE-10
16.	85 8 7083 +8 (-)64 165 683 (-)825 -142 The least number which must be added to 7083 to get a perfect square is 142 OR $\sqrt{20} + \sqrt{27}$ = $2\sqrt{5} + 3\sqrt{3}$ = $2 \times 2.236 + 3 \times 1.732$ = $4.472 + 5.196$	$\begin{bmatrix} 1 \frac{1}{2} \end{bmatrix}$ $\begin{bmatrix} \frac{1}{2} \end{bmatrix}$ $\begin{bmatrix} \frac{1}{2} \end{bmatrix}$ $\begin{bmatrix} \frac{1}{2} \end{bmatrix}$ $\begin{bmatrix} \frac{1}{2} \end{bmatrix}$	[2]	PAGE-10
17.	Let the original Number be x Cube of the original number = x^3 If the number is tripled then the new number = $3x$ Cube of New Number = $(3x)^3$ = $27x^3$ = $27 \times x^3$ = 27 times the cube of original number Hence Proved	$\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$	[2]	PAGE-35
18.	Volume of box = $(60 \times 54 \times 30)$ cu. cm Volume of Small cube = $(6 \times 6 \times 6)$ cu. cm Number of small cubes = $\frac{60 \times 54 \times 30}{6 \times 6 \times 6}$ = 450	$\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ [1]	[2]	PAGE-245
19.	$4.2x = 7.1 \times 7.1 - 2.9 \times 2.9$ $\Rightarrow 4.2x = 7.1^{2} - 2.9^{2}$ $\Rightarrow 4.2x = (7.1 + 2.9)(7.1 - 2.9)$ $\Rightarrow 4.2x = 10 \times 4.2$ $\Rightarrow x = 10$	$\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$	[2]	PAGE-126


20.	24 1			PAGE-125
	$a^4 + \frac{1}{a^4}$			
	$=\left(a^2 + \frac{1}{a^2}\right)^2 - 2 \times a^2 \times \frac{1}{a^2}$	[1]		
	$= 6^2 - 2 = 36 - 2 = 34$	[1]		
	OR		[2]	
	$a^2 - 5a - 6$			PAGE-124
	$= a^2 - 6a + a - 6$	[1]		1 AGE-124
	= a(a-6) + 1(a-6)	$[\frac{1}{2}]$		
	=(a-6)(a+1)	$\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $\begin{bmatrix} \frac{1}{2} \end{bmatrix}$		
21.	y = 2x	$[\frac{1}{2}]$ [1]		PAGE-168
	$4x + 2x = 180^{\circ}$	[1]	[2]	
	$\Rightarrow x = 30^{\circ}$	$\left[\frac{1}{2}\right]$		
22.	F = 6			PAGE-256
	E = 12			
	V+F-E=2	$\left[\frac{1}{2}\right]$		
	$ V + V - E = 2$ $\Rightarrow V + 6 - 12 = 2$	$\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$ $\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$	[2]	
	$\Rightarrow V = 8$	$\left[\frac{1}{2}\right]$		
	Cuboid	$\left[\frac{1}{2}\right]$		
23.	Side of Square field = $\sqrt{5184}$ = 72 m			PAGE-23
25.	Perimeter of Square field	$\left[\frac{1}{2}\right]$		11102 25
	$= 4 \times side = 4 \times 72 = 288 m$	$\left[\frac{1}{2}\right]$		
	Let Breadth of rectangular field be <i>x m</i>	_r 1 ₁		
	Length of rectangular field be 2x m	$\left[\frac{1}{2}\right]$		
	Perimeter of rectangular field be 6x m	1		
	$ATQ, 6x = 288 \Rightarrow x = 48 m$	$\left[\frac{1}{2}\right]$		
	Length of rectangular field be 96 m	$\left[\frac{1}{2}\right]$	[3]	
	Breadth of rectangular field be 48 m	_		
	Area of rectangular field be 4608 sq. m	$\left[\frac{1}{2}\right]$		
	OR			
	Area of each Square piece of cloth = $\frac{9}{16}$ sq. m	[1]		PAGE-21
	Area of each Square piece of cloth			
	$= \sqrt{\frac{9}{16}} = \frac{3}{4}m = 75 \ cm$	[2]		

24.	$\sqrt{10} = 3.162 \dots$	~ 3.16		$\left[\frac{1}{2}\right]$		PAGE-21
		3.162				
	3 (+) 3	10.00000	0	$\left[\frac{1}{2}\right]$		
	6 1 (+) 1 (-	1 00	,	$\left[\frac{1}{2}\right]$	[3]	
	6 2 6 (+) 6 (-	3900 3756		$\left[\frac{1}{2}\right]$		
	6322	14400		$\left[\frac{1}{2}\right]$		
	•	756	5	$\left[\frac{1}{2}\right]$		
25.	³ 288 $\sqrt[3]{54\sqrt[3]{64}}$					PAGE-36
	288 \ 54 \ \ 64			$\left[\frac{1}{2}\right]$		
	$=\sqrt[3]{288\sqrt[3]{54\times4}}$			$\left[\frac{1}{2}\right]$		
	$=\sqrt[3]{288\sqrt[3]{216}}$				[3]	
	$= \sqrt[3]{288 \times 6}$			$\left[\frac{1}{2}\right]$		
	$=\sqrt[3]{1728}$			$\left[\frac{1}{2}\right]$		
26.	= 12. Total distance cov	varad — 210 ± 00	1 – 200 m	[1]		PAGE-63
20.	Distance covered					I AGE-03
	Distance covered					
	Time in second (x)	12	1	[1]		
	Distance in m. (y)	300	у		[3]	
	It is a case of direct	ct variation		[1]		
	$\frac{12}{300} = \frac{1}{y}$					
	$\Rightarrow y = 25$			$\left[\frac{1}{2}\right]$		
	Speed of train $= 2$	$25\frac{m}{s}$				

	$= \left(25 \times \frac{18}{5}\right) \frac{km}{hr} = 90 \frac{km}{hr}$	$[\frac{1}{2}]$		
27.	Marked Price of TV, $MP = Rs.32500$	<u> </u>		PAGE-76
	% Discount = 20%			
	Selling Price of TV,			
	$SP = MP\left(\frac{100 - Discount\%}{100}\right)$			
	$=32500\left(\frac{100-20}{100}\right)$	$[1\frac{1}{2}]$		
	= Rs. 26000			
	Profit% = 30%			
	Cost Price of TV,			
	$CP = \frac{SP \times 100}{100 + Profit\%}$			
	$=\frac{26000\times100}{100\times100}$			
	$-\frac{100 + 30}{26000 \times 100}$		[21	
	$=\frac{20000 \times 100}{130}$	r. 1,	[3]	
	= Rs. 20000	$[1\frac{1}{2}]$		
	OR			
	Total number of Blade packets = 250			PAGE-71
	Number of Blade packets of SP Rs. 11 per packet			11102 /1
	$= 75\% \ of \ 250 = 175$	[1]		
	Number of Blade packets of SP Rs. 9 per packet	L-J		
	= 250 - 175 = 75			
	Total CP = $250 \times 8 = Rs.2000$			
	Total SP = $175 \times 11 + 75 \times 9 = Rs.2600$	[1]		
	Profit = sp - cp = 1600 - 2000 = Rs. 600			
	% Profit = $\frac{Profit}{CP} \times 100 = \frac{600}{2000} \times 100 = 30\%$	[1]		
28.	The area of a circle = $(\pi x^2 + 10\pi x + 25\pi)$ square			PAGE-127
	units			
	$\Rightarrow \pi r^2 = \pi (x^2 + 10x + 25)$	[1]		
	$\Rightarrow r^2 = (x+5)^2$	[-]		
	$\Rightarrow r = (x+5) \text{ units}$	[1]	[3]	
	Circumference of circle = $2\pi r$	[-]		
	$=2\times\pi\times(x+5)$			
	$= (2x + 10)\pi \text{ units}$	[1]		

29.	$\angle ABD = \angle ADB = x$			PAGE-171
	$\angle ABD = \angle BDC = x$			
	$\angle ADC = 2x$	[1]		
	$x = 180^{\circ} - (90^{\circ} + 55^{\circ}) = 180^{\circ} - 145^{\circ} = 35^{\circ}$			
	[Co-interior Angle]	[1]		
	$2x + y = 180^{\circ} $ [Co-interior Angle]			
	$y = 110^{\circ}$	[1]		
	\mathbf{OR}	[1]		
		1	[3]	PAGE-178
	$y = 180^{\circ} - 110^{\circ} = 70^{\circ}$ [Co-interior Angle]	$\left[\frac{1}{2}\right]$		FAGE-176
	$x = 180^{\circ} - (70^{\circ} + 50^{\circ}) = 60^{\circ}$	_r 1 ₁		
	[Angle sum property of Triangl	$\begin{bmatrix} \frac{1}{2} \end{bmatrix}$		
	$w = 180^{\circ} - 70^{\circ} = 110^{\circ}$ [Co-interior Angle]	[1]		
	$z = x = 60^{\circ}$ [Corresponding Angle]	[-1]		
	$p = 180^{\circ} - (70^{\circ} + 60^{\circ}) = 50^{\circ}$	$\begin{bmatrix} \frac{1}{2} \end{bmatrix}$ $\begin{bmatrix} \frac{1}{2} \end{bmatrix}$ [1]		
	[Angle sum property of Triangle]			
30.	For Correct Scale	[1]		PAGE-218
	For Correct Plotting	$\begin{bmatrix} \frac{1}{2} \\ 1 \frac{1}{2} \end{bmatrix}$ $\begin{bmatrix} 1 \frac{1}{2} \end{bmatrix}$		
	†	2,1		
	-8-			
	7			
	D = (2, 5) C = (5, 5)			
	f f g		[3]	
	A = (2, 3) B = (5, 3)		[3]	
	-2-			
	1			
	-4 -3 -2 -1 0 1 2 3 4 5 6 7			
	-1			
	A DCD is a greater als	[1]		
21	ABCD is a rectangle			DACE 50
31.	560 Persons can complete the stadium in 9 months			PAGE-59
	Let x Persons can complete the stadium in 5 months	5 		
	Number of persons 560 x			
	$\begin{pmatrix} x \end{pmatrix}$	[1]	[5]	
	Number of		[5]	
	$\begin{array}{c cccc} months & 9 & 5 \\ \hline (y) & & \end{array}$			
	It is a case of inverse variation			
	$560 \times 9 = x \times 5$	[1]		

	$\Rightarrow x = \frac{560 \times 9}{5} =$	= 1008		[2]		
	Number of extra persons = $1008 - 560 = 448$			[1]		
	OR					
	500 students can accommodate for 30 days					
	100 students joine	ed after 6 days		[1]		
	500 students can a	accommodate for	24 days			
	Let 600 students of	can accommodate	for y days	[1]		
	Number of students (x)	500	600	[1]		
	Number of days (y)	24	у			
	It is a case of inve	erse variation				
	$500 \times 24 = 600$	$\times y$		[1]		
	$\Rightarrow y = \frac{500 \times 24}{600}$	= 20 <i>days</i>		[1]		
32.	SP of First Jean = $Rs.990$					PAGE-71
	% Gain= 10%					
	CP of First Jean= $\frac{SP \times 100}{100 + \% Gain} = \frac{990 \times 100}{100 + 10} = Rs.900$			[1]		
	SP of First Jean = $Rs.990$					
	% Loss= 10%					
	CP of First Jean= $\frac{SP \times 100}{100 - \% Loss} = \frac{990 \times 100}{100 - 10} = Rs. 1100$			[1]	[5]	
	Total $CP = 900$ -	Total $CP = 900 + 1100 = Rs.2000$				
	Total SP = $990 +$	-990 = Rs.1980		[1]		
	Loss = 2000 - 1	980 = Rs.20		[1]		
	$\% Loss = \frac{20}{2000} \times 3$			[1]		
33.	$a^2 + \frac{1}{a^2} = \left(a + \frac{1}{a^2}\right)$		$=\left(\frac{17}{4}\right)^2-2$	[2]		PAGE-125
	=	$\frac{289}{16} - 2 = \frac{257}{16}$				
			$=\frac{257}{16}-2=\frac{225}{16}$	[2]	[5]	
	$\Rightarrow \left(a - \frac{1}{a}\right) = \sqrt{\frac{2}{a}}$	$\frac{25}{16} = 15/4$		[1]		
	N.B: Anyone can also use identity of $4ab$					

circumference of the base the cylinder and length become		
the length of the cylinder.		
So, length cylinder= $h = 33 cm$	[1]	
Base perimeter = $32 cm$		
$2\pi r = 32 cm$		
radius, $r = \frac{16}{\pi}$ cm	[1]	
Volume of cylinder = $\pi r^2 h$		
$= \pi \times \frac{16}{\pi} \times \frac{16}{\pi} \times 33$		
$=\frac{16\times16\times33\times7}{}$		
22		
$= 2688 cm^3$	[1]	
$1 litre = 1000 cm^3$		
Capacity = $\frac{2688}{1000}$ = 2.688 <i>litre</i>		
1000	[1]	