ANNEXURE -A

	DAV PUBLIC SCHOOLS, ODISHA PA-III Examination-2023-24 , SUBJECT: MATHEMATICS, CLASS :IX								
	BLUE PRINT OF QUESTION PAPER								
Sl No.	Chapters / units	Marks Allotted in Syllabus	VSA (10 No.s)	CASE STUDY(01)	SA-I (02 Nos.)	SA-I I (04 Nos.)	LA (02 Nos.)	TOTAL (19NOS.)	
1	Linear Equations in two variables	10	1+1+1		2*		5	10(5)	
2	Circles	15	1+1+1+1(A/R)			3+3	5*	15(7)	
3	Surface areas and volumes	15	1+1+1	4	2	3+3*		15(7)	
	MARKS	40	10(10)	04(1)	04(2)	12(4)	10(2)	40(19)	

Note:- Number inside the bracket indicate the number of questions and the number outside the bracket indicates the total marks.

*Mark denotes the Internal choice questions

TYPOLOGY:

Remembering & Understandi	ng:	22 marks	(54%)
Applying	:	10 marks	(24%)
Analyzing, Evaluating and Cr	eating:	08 marks	(22%)

ANNEXURE- B

TYPOLOGY	R	U	Α	AN	E/C	TOTAL
LA		05(01)	05(01)			10(02)
SA-II	03(01)	03(01)	03(01)	03(01)		12(04)
SA-1	02(01)	02(01)				04(02)
MCQ	05(05)	02(02)		01(01)	02(02)	10(10)
CBQ			04(01)			04(01)
TOTAL	10(07)	12(05)	12(03)	04(02)	02(02)	40(19)

	QUESTIONWISE ANALYSIS						
Q. No.	Unit	Forms of Question - (MCQ,SAI,SAII,CB,LA)	Marks Allotted	(R), (U), (A), (H), (E)			
1	Linear Equations in Two Variables	MCQ	1	R			
2	Linear Equations in Two Variables	MCQ	1	R			
3	Linear Equations in Two Variables	MCQ	1	R			
4	Circles	MCQ	1	R			
5	Circles	MCQ	1	R			
6	Circles	MCQ	1	U			
7	Surface Areas and Volumes	MCQ	1	U			
8	Surface Areas and Volumes	MCQ	1	AN			
9	Surface Areas and Volumes	MCQ	1	E			
10	Circles	MCQ	1	E			
11	Linear Equations in Two Variables	SAI	2	U			
12	Surface Areas and Volumes	SAI	2	R			
13	Circles	SAII	3	U			
14	Circles	SAII	3	AN			
15	Surface Areas and Volumes	SAII	3	R			
16	Surface Areas and Volumes	SAII	3	A			
17	Linear Equations in Two Variables	LA	5	U			
18	Circles	LA	5	A			
19	Surface Areas and Volumes	СВ	4	A			

DAV INSTITUTIONS,ODISHA-ZONE PA-III EXAMINATION (2023-24) SUB-MATHEMATICS CLASS-IX MARKING SCHEME

ANNEXURE-C

Q. No	VALUE POINTS	MARKS PER STEP	TOTAL	BOOK PAGE REFERENCE
	SECTION-A			
1	(a) 4	1	1	NCERT PG NO-56
2	(a) $y=5+3x$	1	1	NCERT PG NO-57
3	(c)x+y=0	1	1	NCERT PG NO-59
4	(a) 150°	1	1	NCERT PG NO-123
5	(a) 2cm	1	1	NCERT PG NO-122
6	(d) 75°	1	1	NCERT PG NO-125
7	(d) $\frac{32}{3}\pi r^3$	1	1	NCERT PG NO-148
8	(b) halved	1	1	NCERT PG NO-146
9	(b) 2:1	1	1	NCERT PG NO-147
10	(b) both Assertion and reason are correct but reason is not correct explanation for Assertion	1	1	NCERT PG NO-124
	SECTION-B			
11	Given $:3x - 2y + 12 = 0$	1/2		NCERT PG NO-57
	ATQ : $y = \frac{3}{4}x$ Putting the value	1/2		
	$3x - 2(\frac{3}{4}x) + 12 = 0$ 3x = -24	1/2		
	$x = -8, y = \frac{3}{4}x (-8) = -6$ Hence the required solution is (-8,-6)	1⁄2		

OR Given: $2x+y=7$, $y=7-2x$				NCERT PG
For $x = -1$, we get $-2+y=7$		1⁄2		NO-57
\Rightarrow y=9 \therefore (-1, 9) is a so	lution.			
For $x = 0$, we get				
⇒0+y=7		1/2		
\Rightarrow y=7 \therefore (0, 7) is a solution	ition.			
For x = 1, we get \Rightarrow 2+y=7				
$\Rightarrow y=5 \qquad \therefore (1,5) \text{ is a sol}$	ution.	1/2		
For $x = 2$, we get				
⇒4+y=7				
\Rightarrow y=3 \therefore (2, 3) is a solu	ition	1/2		
	on $(-1,9),(0,7),(1,5)$ and $(2,3)$			
Tienee, we have four solution	, ((1,9), (0,7), (1,9) und (2,9)			
12 Height=8cm		1/2		NCERT PG
Radius=6cm				NO-147
		1 1/		
Volume= $\frac{1}{3}\pi r^2 h=96\pi \text{ cm}^3$		1 1/2		
5				
	SECTION-C			
13	1			NCERT PG
	230° # B	1		NO-127
Solution	E 700	1		
Since angles in the same	$\nu \neq 1$			
segment of a circle are equ	al.			
$\therefore \angle BAC = \angle BDC$				
$\Rightarrow \angle BDC = 30^{\circ}$				
$\angle DBC = 70^{\circ}$ [Given]				
In $\triangle BCD$, we have				
$\angle BCD + \angle DBC + \angle CDB =$	180°			
[Sum of angles of a triangle				
$\Rightarrow \angle BCD + 70^\circ + 30^\circ = 180$				
$\Rightarrow \angle BCD = 180^\circ - 100^\circ = 80^\circ$		1	3	
Now, in $\triangle ABC$,		1	3	
AB = BC [Given]				
	opposite to equal sides of a triangle			
are equal]	pposite to equal sides of a mangle			
$\Rightarrow \angle BCA = 30^{\circ} [\because \angle BAC =$	30°1			
$\Rightarrow \angle BCA = 50 [\cdot \angle B \ AC = - \\ Now, \ \angle BCA + \angle BCD = \angle I$				
$\Rightarrow 30^{\circ} + \angle ECD = 80^{\circ}$		1		
$\Rightarrow 30^\circ + 2ECD = 80^\circ$ $\Rightarrow \angle BCD = 80^\circ - 30^\circ = 50^\circ$				
	<u></u>	1/2	+	NCERT PG
14Given: AOB diameter, CD=OC=OITo prove:∠BCA=60°	- E A	72		NO-126
Construction: BC is joined.	C D			110-120
÷				
Proof: ODC is an equilateral triang		1	2	
since all sides are equal $S_{0} \neq COD = CO^{0}$, č		3	
So, $\angle COD = 60^{\circ}$				
$\angle CBD = \frac{1}{2} \angle COD = \frac{1}{2} (60) =$	30 ^o (inscribed angle)			
$\angle ACB = 90$ (angle in a semi-		1		
$\angle BCE = 180 - 90 = 90^{\circ}$		1/2		
		1/2		
$\angle \angle \angle \angle EB = 180 - (90 + 30) =$	circle)	1/2 1		
$\angle CEB = 180 - (90 + 30) = $ $\angle AEB = 60^{\circ}$	circle)			
$\angle AEB = 60^{\circ}$ 15 Solution	circle)			NCERT PG

Height (h) of the conical tent = 8 m 1 NO-14	41
Radius (r) of base of the tent= 6 m	+1
So, slant height (1) of the tent $= 10 \text{ m}$	
CSA of conical tent = πrl	
$=(3.14 \times 6 \times 10)m^2 = 188.4 m^2$	
Let the length of canvas required be x m. 1 3	
20 cm=0.2 m will be wasted,	
So length of the canvas used = $(x - 0.2 \text{ m})$.	
Breadth of canvas= 3 m	
Area of sheet = CSA of the tent 1	
$(x - 0.2) \times 3 = 188.4$	
$(x - 0.2) \times 3 = 188.4$ x - 0.2 m = 62.8	
x = 0.2 m = 02.8 x=63meter	
∴ The length of the required canvas sheet will be 63 m	
$\frac{1}{\text{OR}}$ Inner radius of tank r ₁ = 1 m 1 NCER	PT PG
Thickness of the iron sheet = $1 \text{ cm} = 0.01 \text{ m}$	
So, outer radius = 1.01 m 3	+3
Volume of iron used $=\frac{2}{3} \times \frac{22}{7} (1.01^3 - 1^3)$ 2	
$= 0.06343 \text{ cm}^3$	
Thus volume of iron used is 0.06343 cm^3	
16 Surface area of sphere= $4\pi r^2 = 4\pi \times 5 \times 5 = 100\pi cm^2$ NCER	RT PG
curved surface area of cone= $\pi r lcm^2 = 4\pi lcm^2$ NO-14	45
$\therefore 100\pi = 5(4\pi l)$	
$\Rightarrow 1 = 5 \text{cm}$	
Now $l^2 = h^2 + r^2$ l_2	
$\Rightarrow 5^2 = h^2 + 4^2 $	
\Rightarrow h ² = 9	
\Rightarrow h = 3 $\frac{1}{2}$ 3	
Volume of cone= $\frac{1}{3}\pi r^2 h$	
$=\frac{1}{3}\times\frac{22}{7}\times4\times4\times3$	
$=\frac{35.2}{7}$	
$= 50.29 \text{ cm}^3$. 1	
SECTION-D	
17. Given relation is NCER	RT PG
y=9/5(x-273)+32(i) NO-57	7
(i) Given, $x = 313$ K, then from Eq(i); we get,	
y=9/5(313-273)+32	
=9/5×40+32	
$=72+32=104^{\circ}$ F 1.5	
(ii) from Eq (i); putting the values	
158 = 9/5(x-273) + 32	
$\Rightarrow 158 \text{ x } 5 = 9(x-273) + 32 \times 5$	
$\Rightarrow 158 \times 5 = 9(x - 273) + 160$ 5	
$\Rightarrow 790 = 9(x - 273) + 160$	

		1		1
	$\Rightarrow x - 273 = 630/9 = 70$			
	\Rightarrow x-273=70			
	x = 70+273 = 343 K			
	(iii) Let $F=K=x$			
	x = 9/5(x - 273) + 32			
	4x = 2925	2		
	x = 606.25	2		
18	Given:			NCERT PG
	ABCD is a trapezium where non-parallel	1		NO-128
	sides AD and BC are equal.	-		
	To prove:			
	ABCD is cyclic trapezium.			
	Construction:	1		
	DM and CN are perpendicular drawn on AB from D and C, respectively.			
	Proof:In \triangle DAM and \triangle CBN,			
	AD=BC [Given]			
	∠AMD=∠BNC [Right angles]		5	
	DM=CN [Distance between the parallel lines]		5	
	Therefore, $\triangle DAM \cong \triangle CBN$ (by RHS congruence)			
	Also, $\angle B + \angle C = 180^{\circ}$ [Sum of the co-interior angles]			
	$\Rightarrow \angle A + \angle C = 180^{\circ}$	3		
	Thus, ABCD is a cyclic quadrilateral as the sum of the pair of			
	opposite angles is 180°.			
	(Any alternative way of correct proof can also be accepted)			
	Given,	2		NCERT PG
OR	AH,BF,CF,DH are angle bisectors of Quadrilateral ABCD			NO-127
011	To prove, AD			
	EF GH cyclic quadrilateral			
	Proof: ABCD is a quadrilateral. F_{H}^{F}			
			5	
	AH, BF, CF and DH, angle		č	
	bisectors form quadrilateral EFGH.			
	\angle FEH= \angle AEB=180°-(1/2) (\angle A+ \angle B) (Reason)	3		
	\angle FGH= \angle CBD=180°-(1/2) (\angle C+ \angle D) (Reason)			
	So, ∠FEH+∠FGH=180°			
	As, the sum of opp. angles of quadrilateral EFGH is 180°, so it is			
	cyclic.			
	SECTION-E			<u> </u>
19	i) Volume of hemisphere = $(2/3)(22/7)(3.5)(3.5)(3.5)$	1		NCERT PG
19	$= 269.5/3 = 89.83 \text{ m}^3$	1		NO-145
	ii) CSA of hemisphere = $2\pi r^2$			
	$=2(22/7)(4.2)(4.2) = 110.88 \text{ m}^2$	1		
	iii) Surface area of each dome= $2\pi r^2$		4	
	Surface area of 4 domes = $4(2\pi r^2)$.	
L		1	1	1

	= $4 \times 2 \times \frac{22}{7} \times 2^2 = 704/7 = 100.57$ sq.m Area of cloth required = 100.57 sq.m	2	
OR			
	SA of sphere = 154 sq.cm		
	$\Rightarrow 4\pi r^2 = 154$		
	$\Rightarrow r = \frac{7}{2}cm$		
	Volume = $\frac{4}{3}\pi r^3 = (4/3)(22/7)(7/2)(7/2)(7/2)$	2	
	=539/3 = 179.67 cubic cm.		