Exam	ID
------	----

Candidates must write the Set No. on the title page of the OMR sheet

DAV PUBLIC SCHOOLS,ODISHA ZONE –I PA-II EXAMINATION, 2021-22

- Check that this question paper contains 5 printed pages.
- Set number given on the right hand side of the questions paper should be

written on the OMR SHEET by the candidate.

• Check that this question paper contains 50 questions.

CLASS: XI (Commerce) SUB:APPLIED MATHEMATICS (241)

Time: 90 Minutes

Maximum Marks: 40

General Instructions:

1. This question paper contains three sections – A, B and C. Each part is compulsory.

2. Section - A has 20 MCQs, attempt any 16 out of 20.

3. Section - B has 20 MCQs, attempt any 16 out of 20

4. Section - C has 10 MCQs, attempt any 8 out of 10.

5. There is no negative marking.

6. All questions carry equal marks.

SECTION – A

(Section A consists of 20 questions (1 -20) of each 1mark weightage. Any 16 questions are to be attempted. The first attempted 16 questions would be evaluated.)

Q1.	The value of [(e	$(54)^{2/3} \times 2^{-2} \div 8^{0}^{-1/2}$ is			1
	(A) 1	(B) ½	(C) 2	(D) 0	
Q2.	If $\log x = -1.23$	57, then x is equa	ll to		1
	(A) 0.01726	(B) 0.1726	(C) 0.5812	(D) 0.05812	
Q3.	If 2 men or 3 b	oys take 40 hours	to do a certain piece of	f work, then 4	1
	men and 9 boys will together complete the work in				
	(A) 8 hours	(B) 6 hours	(C) 5 hours	(D) 4 hours	
Q4.	In 1900 years,	the no. of odd day	ys is		1
	(A) 0	(B) 1	(C) 2	(D) 3	

Page 1 of 5

Q5.	Number of proper s	ubsets of a set co	ntaining 4 elements	s is	1
	(A) 4^2 (E	B) $4^2 - 1$	(C) 2^4	(D) $2^4 - 1$	
Q6.	The number of integ	gers between 100	and 1000 that are	ot divisible by 7	1
	are				
~	(A) 128	(B) 899	(C) 771	(D) 772	
Q 7.	If 9 times the 9 th ter	m of an A.P. is ec	fual to 13 times the	13 th term, then	I
	the $22^{n\alpha}$ term of the	A.P 18	(C) 100	(\mathbf{D}) 220	
00	(A) 0	$(\mathbf{B}) 22$	(C) 198	(D) 220	1
Qð.	The minimum value	e of $4^{x} + 4^{x}, x \in R$ i	S		1
	(A) 2	(B) 4	(C) 6	(D) 8	
Q9.	The product of 5 ter	rms of G.P. whose	e 3 rd term is 2 is		1
010	(A) 5^2	(B) 2°	(C) 3^2	(D) 3^5	
Q10.	The negation of the	statement "Ama	n or Ria lived in Lu	cknow" is	I
	(A) Aman did not liv (D) A 1: 1: 1	e in Lucknow and	Ria lived in Luckno	٧W	
	(B) Aman lived in Li	icknow and Ria di	Id not live in Luckno	W	
	(C) Aman did not fiv				
	(D) Aman did not liv	e in Lucknow or I	Ria did not live in Lu	icknow.	
011.	If SPIDER is writte	n as PSDIRE. CO	OMMON would be	written as	1
Z 111	(A)ZRHRNO	(B) OCMMN	(C) ZRM	MPO (D) none	•
	of these				
Q12.	The contra positive	of the statement	" If p then q" is		1
-	(A) If q then p	(B) If $\sim q$ the	$n \sim p$ (C) If p th	$en \sim q$ (D) If $\sim p$	
	then ~q			• • • • •	
Q13	The domain of the f	unction f define	d by $f(x) = \sqrt{x^2 - 9}$ is		1
	(A)[-3, 3]	(B)(-3,3)	$(C) (-\infty -3]$	$ [3 \infty)$ (D) [0.	
	3]				
014	If $f(x) = px + q$, whe	re p and q are int	tegers, $f(-1) = 1$ and	(1) = 13, then	1
L.	n and a are	- I I			
	(A) p = 4, q = 5	(B) $p = -4, q = 5$	(C) $p = -4, q = -5$	(D) $p = 4, q = -5$	
Q15	The variance of the	first 5 natural nu	imbers is		1
C C	(A) 1	(B) 2	(C) 3	(D) 4	
Q16	City of birth is an e	xample of a/an			1
	(A)Nominal scale	(B) Ordinal scale	(C) Interval scale	(D) Ratio scale	
Q17	The mean deviation	about the media	n of the data: 3, 6 ,	l 1, 12, 18 is	1
	(A) 1.2	(B) 2.2	(C) 3.2	(D) 4.2	
Q18	Skewness is a measu	ire of			1
	(A)Peakedness	(B) Central ter	idency (C) Symmet	ry (D)	
010	Dispersion.				1
Q19	The first four centra	al moments of a f	requency distributi	on are 0, 2.4, 0.6	I
	and 17.25. Then the	curve is	(\mathbf{C}) D 1 (1)	(\mathbf{D})	
010	(A) Leptokurtic	(B) Mesokurtic	(C) Platykurtic	(D) none of these	1
Q20	To visually examine the relation between two quantitative variables, one			1	
	(A) Bar graphs	(B) Die charts	(C) Histograms	(D) Scatter plata	
	(A) Dai graphs	(D) Fie charts	(C) mistograms	(D) sealler plots	

SECTION – B

(Section A consists of 20 questions (21 - 40) of each 1mark weightage. Any 16 questions are to be attempted. The first attempted 16 questions would be evaluated.)

Q21	If $a+ib=\frac{(x+1)^2}{2x-i}$, then a^2+b^2 is equal to		
	(A) $\frac{(x+1)^4}{4x^2-1}$ (B) $\frac{(x+1)^2}{4x^2+1}$ (C) $\frac{(x+1)^4}{4x^2+1}$ (D) $\frac{(x+1)^2}{4x^2-1}$		
Q22	If $\log_{3\pi} x = -3$, then the value of x is	1	
	(A) $1/5$ (B) $-1/5$ (C) -1 (D) 5		
Q23	The average of 19 observations is 54. If the average of first 10 observations is 56 and that of last 10 observations is 53, then the 10 th	1	
	observation is $(D) 56$ $(C) 64$ $(D) 66$		
Q24	(A) 54 (B) 56 (C) 64 (D) 66 A cuboid container has the capacity to hold 50 small boxes. If all the	1	
	annensions of the container are doubled, then it can hold (sman boxes of same size)		
	(A) 100 boxes (B) 200 boxes (C) 400 boxes (D) 800 boxes		
Q25	If A = {-2, -1, 0, 1, 2} and $f: A \to Z$ be given by $f(x) = x^2 - 2x - 3$, then the	1	
	rre - image/images of 5 are		
	(A) - 2, 4 (B) - 2 (C) 4 (D) none of these		
Q26	If R is a relation on Z (set of integers) defined by x R y if $ x - y \le 1$, then R	1	
	is		
	(A) reflexive and symmetric (B) symmetric and transitive		
	(C) reflexive and transitive (D) equivalence relation		
Q27	Which of the following pairs are logically equivalent?	1	
	(A) Conditional, Contra positive (B) Conditional, Inverse (C) Contra positiva Conversa (D) Inversa Contra positiva		
0.05	(C) Contra positive, Converse (D) Inverse, Contra positive Mahan said "This girl is the wife of the grandson of my methor" Mahan	1	
Q20	is girl's	1	
	(A) Brother (B) Uncle (C) Father-in-law (D) son		
Q29	The statement $p \Rightarrow p \lor q$ is	1	
•	(A) a tautology (B) a contradiction (C) neither (A) nor (B) (D) None		
Q30	If $f(x) = x^2 - 3x + 4$, then the values of x satisfying $f(x) = f(2x+1)$ are	1	
	(A) 1, 2 (B) -1, 2 (C) -1, $\frac{2}{3}$ (D) 1, $\frac{2}{3}$		
Q31	The domain of definition of the function $f(x) = \log x $ is	1	
	(A) R (B) $(-\infty 0)$ (C) $(0,\infty)$ (D) R - $\{0\}$		
032	The range of the function is $f(x) = 2 - x - 5 $ is	1	
X	(A) $(-\infty, 1]$ (B) $(-\infty, 2]$ (C) $(-\infty, 1)$	-	
	$(D) (-\infty, 2) \qquad (D) (-\infty, 2)$		
033	If Karl Pearson's coefficient of skewness of a distribution is 2.5 standard	1	
200	deviation is 8 and mean is 30, then mode of the distribution is	1	
	(A) 25 (B) 10 (C)20 (D) 5		

Q34Percentile rank refers to1(A) the percentage of scores that fall above a certain score(B) the percentage of scores that fall at or above a certain score(C) the percentage of scores that fall at or below a certain score(C) the percentage of scores that fall at or below a certain score(D) the percentage of scores that equal a certain score1(A) r>1(B) $r \le -1$ (C) $-1 < r < 1$ (D) $-1 \le r \le 1$ (D) $-1 \le r \le 1$ Q36If $\sum u_i v_i = 50$ and $n = 15$ where u_i and v_i are deviations of X and Y seriesfrom their respective mean, then Cov(X,Y) is(A) 2.43(B) 3.33 (C) 3.24 (D) 3.63 Q37If \bar{x} is the mean of n observations $x_1, x_2, x_3,, x_n$, then the value of $\sum_{i=1}^{n} (x_i - \bar{x})$ is(A) -1 (B) 0(C) 1(D) $n - 1$ Q38The median of the data 78, 56, 22, 34, 45, 54, 39, 68, 54, 84 is(A) 45 (B) 49.5 (C) 54 (D) 56 Q39If the standard deviation of a set of observations is 8 and each observationis divided by -2 , then the standard deviation of the new set of observationswill be(A) -4 (A) -4 (B) -8 (C) 8(D) 4Q40For any frequency distribution, the Kurtosis is(A) Greater than 1(B) les than 1(A) Greater than 1
(A) the percentage of scores that fall above a certain score (B) the percentage of scores that fall at or above a certain score (C) the percentage of scores that fall at or below a certain score (D) the percentage of scores that equal a certain score (Q35 The coefficient of correlation 'r' satisfies (A) $r>1$ (B) $r \le -1$ (C) $-1 < r < 1$ (D) $-1 \le r \le 1$ Q36 If $\sum u_i v_i = 50$ and n = 15 where u_i and v_i are deviations of X and Y series from their respective mean, then Cov(X,Y) is (A) 2.43 (B) 3.33 (C) 3.24 (D) 3.63 Q37 If \bar{x} is the mean of n observations $x_1, x_2, x_3,, x_n$, then the value of $\sum_{i=1}^{n} (x_i - \bar{x})$ is (A) -1 (B) 0 (C) 1 (D) n -1 Q38 The median of the data 78, 56, 22, 34, 45, 54, 39, 68, 54, 84 is (A) 45 (B) 49.5 (C) 54 (D) 56 Q39 If the standard deviation of a set of observations is 8 and each observation is divided by -2 , then the standard deviation of the new set of observations will be (A) -4 (B) -8 (C) 8 (D) 4 Q40 For any frequency distribution, the Kurtosis is 1 (A) Grant (B) less than 1 (C) equal to 1 (D) None
(B) the percentage of scores that fall at or above a certain score (C) the percentage of scores that fall at or below a certain score (D) the percentage of scores that equal a certain score (Q35 The coefficient of correlation 'r' satisfies (A) $r>1$ (B) $r \le -1$ (C) $-1 < r < 1$ (D) $-1 \le r \le 1$ Q36 If $\sum u_i v_i = 50$ and n = 15 where u_i and v_i are deviations of X and Y series from their respective mean, then Cov(X,Y) is (A) 2.43 (B) 3.33 (C) 3.24 (D) 3.63 If \bar{x} is the mean of n observations $x_1, x_2, x_3,, x_n$, then the value of $\sum_{i=1}^{n} (x_i - \bar{x})$ is (A) -1 (B) 0 (C) 1 (D) n -1 Q38 The median of the data 78, 56, 22, 34, 45, 54, 39, 68, 54, 84 is (A) 45 (B) 49.5 (C) 54 (D) 56 Q39 If the standard deviation of a set of observations is 8 and each observations is divided by -2 , then the standard deviation of the new set of observations will be (A) -4 (B) -8 (C) 8 (D) 4 Q40 For any frequency distribution, the Kurtosis is 1 (A) Grant (D) None
(C) the percentage of scores that fall at or below a certain score (D) the percentage of scores that equal a certain score (Q35 The coefficient of correlation 'r' satisfies 1 (A) $r>1$ (B) $r \le -1$ (C) $-1 < r < 1$ (D) $-1 \le r \le 1$ Q36 If $\sum u_i v_i = 50$ and n = 15 where u_i and v_i are deviations of X and Y series 1 from their respective mean, then Cov(X,Y) is (A) 2.43 (B) 3.33 (C) 3.24 (D) 3.63 Q37 If \bar{x} is the mean of n observations $x_1, x_2, x_3,, x_n$, then the value of $\sum_{i=1}^{n} (x_i - \bar{x})$ is (A) -1 (B) 0 (C) 1 (D) n -1 Q38 The median of the data 78, 56, 22, 34, 45, 54, 39, 68, 54, 84 is 1 (A) 45 (B) 49.5 (C) 54 (D) 56 Q39 If the standard deviation of a set of observations is 8 and each observation 1 is divided by -2 , then the standard deviation of the new set of observations will be (A) -4 (B) -8 (C) 8 (D) 4 Q40 For any frequency distribution, the Kurtosis is 1 (A) Greater than 1 (B) less than 1 (C) equal to 1 (D) None
(D) the percentage of scores that equal a certain score Q35 The coefficient of correlation 'r' satisfies 1 (A) $r>1$ (B) $r \le -1$ (C) $-1 < r < 1$ (D) $-1 \le r \le 1$ Q36 If $\sum u_i v_i = 50$ and n = 15 where u_i and v_i are deviations of X and Y series 1 from their respective mean, then Cov(X,Y) is (A) 2.43 (B) 3.33 (C) 3.24 (D) 3.63 Q37 If \bar{x} is the mean of n observations $x_1, x_2, x_3,, x_n$, then the value of $\sum_{i=1}^{n} (x_i - \bar{x})$ is (A) -1 (B) 0 (C) 1 (D) n -1 Q38 The median of the data 78, 56, 22, 34, 45, 54, 39, 68, 54, 84 is 1 (A) 45 (B) 49.5 (C) 54 (D) 56 Q39 If the standard deviation of a set of observations is 8 and each observation 1 is divided by -2 , then the standard deviation of the new set of observations will be (A) -4 (B) -8 (C) 8 (D) 4 Q40 For any frequency distribution, the Kurtosis is 1 (A) Greater than 1 (B) less than 1 (C) equal to 1 (D) None
Q35The coefficient of correlation 'r' satisfies1(A) $r > 1$ (B) $r \le -1$ (C) $-1 < r < 1$ (D) $-1 \le r \le 1$ (D) $-1 \le r \le 1$ (D)Q36If $\sum u_i v_i = 50$ and $n = 15$ where u_i and v_i are deviations of X and Y series1from their respective mean, then $Cov(X,Y)$ is(A) 2.43 (B) 3.33 (C) 3.24 (D) 3.63 Q37If \bar{x} is the mean of n observations $x_1, x_2, x_3,, x_n$, then the value of $\sum_{i=1}^{n} (x_i - \bar{x})$ is1(A) -1 (B) 0 (C) 1 (D) $n - 1$ Q38The median of the data 78, 56, 22, 34, 45, 54, 39, 68, 54, 84 is1(A) 45 (B) 49.5 (C) 54 (D) 56 Q39If the standard deviation of a set of observations is 8 and each observation 11is divided by -2 , then the standard deviation of the new set of observations will be(A) -4 (B) -8 (C) 8 (D) 4 Q40For any frequency distribution, the Kurtosis is1(D) None1
(A) $r>1$ (B) $r \le -1$ (C) $-1 < r < 1$ (D) $-1 \le r \le 1$ Q36 If $\sum u_i v_i = 50$ and $n = 15$ where u_i and v_i are deviations of X and Y series 1 from their respective mean, then Cov(X,Y) is (A) 2.43 (B) 3.33 (C) 3.24 (D) 3.63 Q37 If \bar{x} is the mean of n observations $x_1, x_2, x_3,, x_n$, then the value of $\sum_{i=1}^{n} (x_i - \bar{x})$ is (A) -1 (B) 0 (C) 1 (D) $n - 1$ Q38 The median of the data 78, 56, 22, 34, 45, 54, 39, 68, 54, 84 is 1 (A) 45 (B) 49.5 (C) 54 (D) 56 Q39 If the standard deviation of a set of observations is 8 and each observation 1 is divided by -2 , then the standard deviation of the new set of observations will be (A) -4 (B) -8 (C) 8 (D) 4 Q40 For any frequency distribution, the Kurtosis is 1 (A) Greater than 1 (B) less than 1 (C) equal to 1 (D) None
Q36 If $\sum u_i v_i = 50$ and $n = 15$ where u_i and v_i are deviations of X and Y series from their respective mean, then Cov(X,Y) is (A) 2.43 (B) 3.33 (C) 3.24 (D) 3.63 (A) 2.43 (B) 3.33 (C) 3.24 (D) 3.63 If \bar{x} is the mean of n observations $x_1, x_2, x_3,, x_n$, then the value of $\sum_{i=1}^{n} (x_i - \bar{x})$ is (A) -1 (B) 0 (C) 1 (D) n - 1 Q38 The median of the data 78, 56, 22, 34, 45, 54, 39, 68, 54, 84 is (A) 45 (B) 49.5 (C) 54 (D) 56 Q39 If the standard deviation of a set of observations is 8 and each observation is divided by -2, then the standard deviation of the new set of observations will be (A) - 4 (B) - 8 (C) 8 (D) 4 Q40 For any frequency distribution, the Kurtosis is 1 (A) Greater than 1 (B) less than 1 (C) equal to 1 (D) None
Q36 If $\sum u_i v_i = 50$ and $n = 15$ where u_i and v_i are deviations of X and Y series from their respective mean, then Cov(X,Y) is (A) 2.43 (B) 3.33 (C) 3.24 (D) 3.63 Q37 If \bar{x} is the mean of n observations $x_1, x_2, x_3,, x_n$, then the value of $\sum_{i=1}^{n} (x_i - \bar{x})$ is (A) -1 (B) 0 (C) 1 (D) n - 1 Q38 The median of the data 78, 56, 22, 34, 45, 54, 39, 68, 54, 84 is (A) 45 (B) 49.5 (C) 54 (D) 56 Q39 If the standard deviation of a set of observations is 8 and each observation is divided by -2, then the standard deviation of the new set of observations will be (A) -4 (B) -8 (C) 8 (D) 4 Q40 For any frequency distribution, the Kurtosis is (A) Greater than 1 (B) less than 1 (C) equal to 1 (D) None
$\begin{array}{c} \textbf{from their respective mean, then Cov(X,Y) is} \\ (A) 2.43 (B) 3.33 (C) 3.24 (D) 3.63 \\ \textbf{If } \bar{x} \textbf{ is the mean of n observations } x_1, x_2, x_3, \dots, x_n, \textbf{ then the value of } \sum_{i=1}^n (x_i - \bar{x}) \textbf{ is} \\ (A) -1 (B) 0 (C) 1 (D) \textbf{ n - 1} \\ \textbf{Q38} \textbf{The median of the data } 78, 56, 22, 34, 45, 54, 39, 68, 54, 84 \textbf{ is} \\ (A) 45 (B) 49.5 (C) 54 (D) 56 \\ \textbf{Q39} \textbf{If the standard deviation of a set of observations is 8 and each observation sis divided by -2, then the standard deviation of the new set of observations will be \\ (A) -4 (B) -8 (C) 8 (D) 4 \\ \textbf{Q40} \textbf{For any frequency distribution, the Kurtosis is } 1 \\ (A) Greater than 1 (B) less than 1 (C) equal to 1 (D) None \\ \end{array}$
(A) 2.43 (B) 3.33 (C) 3.24 (D) 3.63 If \bar{x} is the mean of n observations $x_1, x_2, x_3,, x_n$, then the value of $\sum_{i=1}^n (x_i - \bar{x})$ is (A) -1 (B) 0 (C) 1 (D) n - 1 Q38 The median of the data 78, 56, 22, 34, 45, 54, 39, 68, 54, 84 is (A) 45 (B) 49.5 (C) 54 (D) 56 Q39 If the standard deviation of a set of observations is 8 and each observation is divided by -2, then the standard deviation of the new set of observations will be (A) -4 (B) - 8 (C) 8 (D) 4 Q40 For any frequency distribution, the Kurtosis is 1 (A) Greater than 1 (B) less than 1 (C) equal to 1 (D) None
Q37 If \bar{x} is the mean of n observations $x_1, x_2, x_3,, x_n$, then the value of $\sum_{i=1}^n (x_i - \bar{x})$ is (A) -1 (B) 0 (C) 1 (D) n - 1 Q38 The median of the data 78, 56, 22, 34, 45, 54, 39, 68, 54, 84 is 1 (A) 45 (B) 49.5 (C) 54 (D) 56 Q39 If the standard deviation of a set of observations is 8 and each observation 1 is divided by -2, then the standard deviation of the new set of observations will be (A) -4 (B) - 8 (C) 8 (D) 4 Q40 For any frequency distribution, the Kurtosis is 1 (A) Greater than 1 (B) less than 1 (C) equal to 1 (D) None
If x is the mean of n observations $x_1, x_2, x_3, \dots, x_n$, then the value of $\sum_{i=1}^{n} (x_i - x)$ is (A) -1 (B) 0 (C) 1 (D) n - 1 Q38 The median of the data 78, 56, 22, 34, 45, 54, 39, 68, 54, 84 is 1 (A) 45 (B) 49.5 (C) 54 (D) 56 Q39 If the standard deviation of a set of observations is 8 and each observation 1 is divided by -2, then the standard deviation of the new set of observations will be (A) - 4 (B) - 8 (C) 8 (D) 4 Q40 For any frequency distribution, the Kurtosis is 1 (A) Greater than 1 (B) less than 1 (C) equal to 1 (D) None
 (A) -1 (B) 0 (C) 1 (D) n - 1 Q38 The median of the data 78, 56, 22, 34, 45, 54, 39, 68, 54, 84 is (A) 45 (B) 49.5 (C) 54 (D) 56 Q39 If the standard deviation of a set of observations is 8 and each observation 1 is divided by -2, then the standard deviation of the new set of observations will be (A) -4 (B) -8 (C) 8 (D) 4 Q40 For any frequency distribution, the Kurtosis is (A) Greater than 1 (B) less than 1 (C) equal to 1 (D) None
 Q38 The median of the data 78, 56, 22, 34, 45, 54, 39, 68, 54, 84 is (A) 45 (B) 49.5 (C) 54 (D) 56 Q39 If the standard deviation of a set of observations is 8 and each observation 1 is divided by -2, then the standard deviation of the new set of observations will be (A) - 4 (B) - 8 (C) 8 (D) 4 Q40 For any frequency distribution, the Kurtosis is 1 (A) Greater than 1 (B) less than 1 (C) equal to 1 (D) None
 (A) 45 (B) 49.5 (C) 54 (D) 56 Q39 If the standard deviation of a set of observations is 8 and each observation 1 is divided by -2, then the standard deviation of the new set of observations will be (A) - 4 (B) - 8 (C) 8 (D) 4 Q40 For any frequency distribution, the Kurtosis is 1 (A) Greater than 1 (B) less than 1 (C) equal to 1 (D) None
 Q39 If the standard deviation of a set of observations is 8 and each observation 1 is divided by -2, then the standard deviation of the new set of observations will be (A) - 4 (B) - 8 (C) 8 (D) 4 Q40 For any frequency distribution, the Kurtosis is 1 (A) Greater than 1 (B) less than 1 (C) equal to 1 (D) None
 is divided by -2, then the standard deviation of the new set of observations will be (A) - 4 (B) - 8 (C) 8 (D) 4 Q40 For any frequency distribution, the Kurtosis is 1 (A) Greater than 1 (B) less than 1 (C) equal to 1 (D) None
will be (A) - 4(B) - 8(C) 8(D) 4Q40For any frequency distribution, the Kurtosis is1(A) Greater than 1(B) less than 1(C) equal to 1(D) None
(A) - 4 (B) - 8 (C) 8 (D) 4 $(A) - 4 (B) - 8 (C) 8 (D) 4$ $(A) Greater than 1 (B) less than 1 (C) equal to 1 (D) None$
Q40 For any frequency distribution, the Kurtosis is 1 (A) Greater than 1 (B) less than 1 (C) equal to 1 (D) None
(A) Greater than 1 (B) less than 1 (C) equal to 1 (D) None
(D) loss that 1 (D) loss that 1 (C) equal to 1 (D) Note
SECTION - C
(Section C consists of 10 questions (41-50) of each Imark weightage. Any 08 questions
are to be attempted. Questions 46 – 50 are based on a Case-Study. The first attempted
us questions would be evaluated.)
Q41 A car travels for 2 hours at a speed of 40 km/h and then travels at 50 1
km/h for next 2 hours. The average speed of the car is
(A) 45 km/h (B) 44.4 km/h (C) 47 km/h (D) 48 km/h
Q42 The binary equivalent of the decimal number (24) ₁₀ is 1
(A) $(1101111)_2$ (B) $(11000)_2$ (C) $(111111)_2$ (D) $(11001)_2$
Q43 ABC is an isosceles right angled triangle with $\angle ABC = 90^{\circ}$. A semicircle is 1
drawn with AC as diameter. If $AB = BC = 7$ cm, then the area of the
shaded region taking $\pi = \frac{22}{\pi}$ is
(A) 4 cm^2 (B) 7 cm^2 (C) 14 cm^2 (D) 28 cm^2

(A)
$$4 \text{ cm}^2$$

(C) 14 cm^2 (D) 28 cm^2

- Q44 Find the odd one out: BAKE, PEEL, FRY, BOIL, ROAST 1 (B) PEEL (C) ROAST (D) FRY (A)BOIL
- Q45 The difference between the highest and lowest values of the observations 1 is called (A) Frequency (B) Mean (C) Class- intervals (D) Range

CASE STUDY

In a survey of 40 students, it was found that 21 had taken Mathematics,16 had taken Physics,15 had taken Chemistry, 7 had taken Mathematics and Chemistry, 12 had taken Mathematics and Physics, 5 had taken Physics and Chemistry and 4 had taken all the three subjects

Based on the given information, answer the following questions:-

Q46	The number of students who had taken Mathematics only is				1
	(A) 5	(B) 6	(C) 7	(D) 8	

- Q47 The number of students who had taken Physics and Chemistry but not 1 Mathematics is (A) 1 (B) 3 (C) 5 (D) 7
- Q48The number of students who had taken exactly one of the three subjects is
(A) 1211(A) 12(B) 14(C) 16(D) 18
- Q49 The number of students who had taken at least one of the three subjects is
(A) 401(B) 38(C) 34(D) 32
- **Q50** The number of students who had taken none of the three subjects is 1 (A) 8 (B) 6 (C) 2 (D) 0