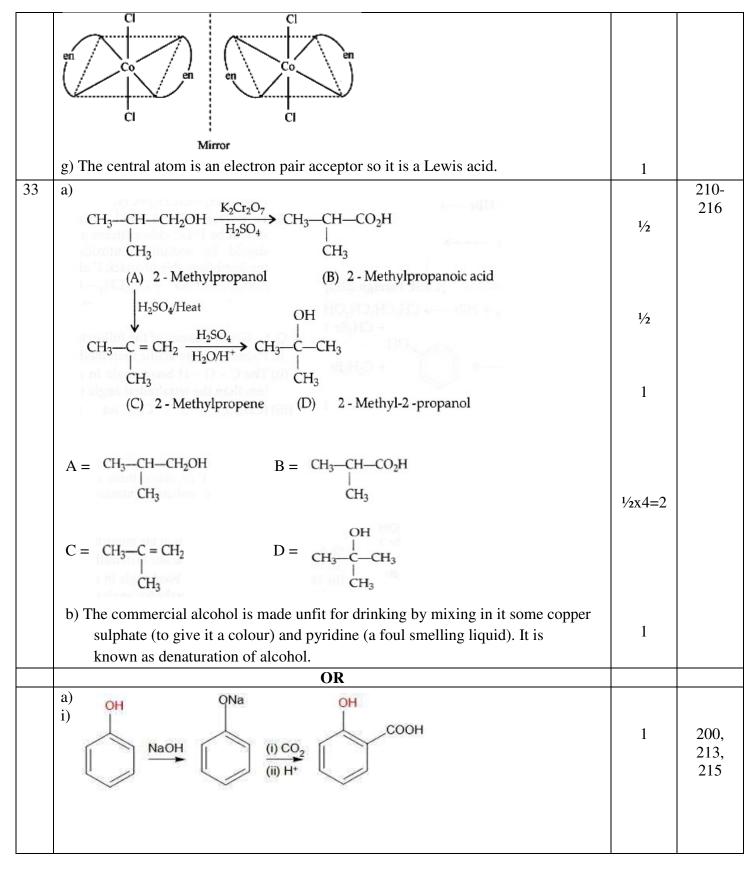
	ANNEXU	RE –C	
	DAV PUBLIC SCHOOLS, ODISHA ZONE		
	HY : 2023-24		
	CLASS: XII , SUBJECT : CHEMISTRY		
	MARKING SCHEME(SET-2)		I
QS TN N O	Value Points	Marks Allotte d	PAGE NO. OF NCER T /TEXT BOOK
1	a) He	1	45
2	a)The activation energy of forward reaction is $E_1 + E_2$ and the product is less stable than reactant.	1	113
3	a) Sc	1	311
4	a) But-3-en-2-ol	1	289
5	a) $0.005 \text{ mol}\text{L}^{-1}\text{s}^{-1}$	1	96
6	c) Nearly same atomic size	1	213
7	c) 16 times	1	100
8	c) 8,000 cm ⁻¹	1	252
9	c) 3	1	226
10	a)2-Methylpropene	1	206
11	a) $Cr > Mn > V > Ti$	1	221
12	d) benzyl alcohol	1	222
13	b) Both A and R are true but R is not the correct explanation of A.	1	46
14	d) A is false but R is true.	1	210
15	b) Both A and R are true but R is not the correct explanation of A.	1	101
16	b) Both A and R are true but R is not the correct explanation of A.	1	295
17	The net reaction is :		70
	$Ni(s)+2Ag^+(aq) ightarrow Ni^{2+}(aq)+2Ag(s)$		
	According to Nernst equation, $E_{cell}=E_{cell}^{\circ}-rac{0.0591}{n}{ m log}rac{[Anode]}{[Cathode]}$	1/2	
	$E_{cell} = \left[E^{\circ}_{Ag^{+}/Ag} - E^{\circ}_{Ni^2/Ni} ight] - rac{0.0591}{2} \log rac{[Ni^{2+}]}{[Ag^{+}]^2}$	1/2	
	$= 1.05 - rac{0.0591}{2} \log rac{0.16}{(0.002)^2}$	72	
	$egin{aligned} &=1.05-rac{0.0591}{2} \logig(4 imes 10^4ig)=1.05\ &-rac{0.0591}{2} (\log 4+4 \log 10ig) \end{aligned}$	1⁄2	
	$= 1.05 - rac{0.0591}{2} imes 4.6020 = 1.05 - 0.1360 = 0.914V$	1/2	

HY/CHEM-XII(MS)/SET-2


18	a) $6 \operatorname{Fe}^{2+} + \operatorname{Cr}_2 \operatorname{O7}^{2-} + 14 \operatorname{H}^+ \to 2 \operatorname{Cr}^{3+} + 6 \operatorname{Fe}^{3+} + 7 \operatorname{H}_2 \operatorname{O}^{3+}$		1	226	
10	b) $2MnO_4^-+5C_2O_4^{2-}+16H^+\rightarrow 2Mn^{2+}+10CO_2+8H_2O$			1	200
19	$A = C_2H_4$, $B = CH_3CH_3$, $C = CH_3OC_2H_5$, $D = CH_3CH_2NC$		¹∕₂ x 4	299-	
20	a)			1/2 +1/2	310 341
20	compounds	Tests/reagents	observation	72 772	541
	phenol	Neutral FeCl ₃ solution	Violet colour solution		
	ethanol		No such obs.		
	b)				
	compounds	Tests/reagents	observation		
	tert-butyl alcohol	Lucas test	Turbidity occurs	1/2 +1/2	338
		(conc.HCl+anh.ZnCl ₂)	immediately.		
	n- butyl alcohol		No such obs.		
21	-		high because they have a large	1	218
	-	ectrons resulting strong inter ato	Ũ	1	
	b) Weak inter atomic me	etallic bonding due to absence	e of unpaired electron.	1	
		OR			
	a) In Comparison to Fe^2	$^+$, Cr ²⁺ is a stronger reducing	agent because in formation of	1	
	Cr^{3+} from Cr^{2+} changes is from $d^4 \rightarrow d^3$. In d^3 electronic configuration t_{2g} orbitals are half filled. But in Fe ²⁺ to Fe ³⁺ Changes is d^6 to d^5			1	
	are half filled. But in Fe ⁻¹ to Fe ⁻¹ Changes is d ^{\circ} to d ^{\circ}				
	b) Atomic number (Z)=27, it is Co with configuration $3d^7$,4s ² In Co ²⁺ , the configuration is $3d^7$. Now, Number of unpaired electrons =3			1	
	-		unpaired electrons =3		
22		$=\sqrt{n(n+2)} = \sqrt{3(3+2)} = 3.87 \text{ BM}$	ur phase (p) is proportional to	1	46
		he gas (x) in the solution".	ar phase (p) is proportional to	1	40
			off factor (i) will decrease and	1	58
		solution will increase.			
	c) Molality is considered	l better for expressing the cor	ncentration as compared to	1	37
	molarity because the	molarity changes as volume of	of the solution changes with		
	temperature.				
23	a)	6- 241 202-			94
		$\begin{array}{c} 6e^- \longrightarrow 2\mathrm{Al} + 3\mathrm{O}^{2-} \\ 6\mathrm{F} \qquad (2 \times 27) \mathrm{g} \end{array}$		1	
	To produce 54 g of Al, charge needed $= 6F$				
	To produce 40 g of Al, charge needed = $\frac{(40g)}{(54g)} \times (6F) = 4.44F.$				
	b) At anode=Br ₂ , at catho	de=Cu		1/2 +1/2	87
	c) Λ^{o} for NaBr is calculate	d by the following expression.			
	Λ° NaBr = λ° NaCl + λ			1	
		$150=128 \text{ Scm}^2 \text{mol}^{-1}$			83
	-1201132				

24	a) Bis(ethane 1,2-diamine) dihydroxidochromium(III) chloride	1	249
	b) In $[Ni(H_2O)_6]^{2+}$, water is a weak field ligand. Therefore, there are unpaired electrons in Ni ²⁺ . In this complex, the d electrons from the lower energy level	1	259
	can be excited to the higher energy level i.e., the possibility of d-d transition is	1	209
	present. Hence, $Ni(H_2O)_6]^{2+}$ is coloured.		
	In $[Ni(CN)_4]^2$, the electrons are all paired as CN^- is a strong field ligand.		
	Therefore, d-d transition is not possible in $[Ni(CN)_4]^{2-}$. Hence, it is colourless.		
25	c) $t_{2g}^{4} e_{g}^{0}$	1	112
23	a) $\log k = \log A - \frac{E_a}{2.303 \text{RT}}$	*/2	113
	$14.2 - \frac{1.0 \times 10^4}{T} = \log A - \frac{E_a}{2.303 RT}$		
	$1.0 \times 10^4 = \frac{E_a}{19.14}$		
	$E_a = 19.14 \times 10^4 Jmol^- = 191.4 KJmol^-$	1⁄2	
	For first order		
	$k = 0.693/t_{1/2}$	1⁄2	
	$= 0.693/200 \text{ min}^{-1}$		
	$= 0.3465 \text{ min}^{-1}$	1⁄2	
	b) elementary reaction.	1	
26	Any three		206
	a) $\underbrace{\operatorname{HCl} + \operatorname{HNO}_2}_{\operatorname{Aniline}} \xrightarrow{\operatorname{HCl} + \operatorname{HCl}} \underbrace{\operatorname{HCl}}_{\operatorname{HBr}} \xrightarrow{\operatorname{CuBr}} \operatorname{HBr}}_{\operatorname{HBr}} \xrightarrow{\operatorname{CuBr}} + \operatorname{N_2}$	1	
	b) As all the hydrogen atoms are equivalent and replacement of any hydrogen will		
	give the same product.		
		1	301
	$ \overset{H_3C}{\longrightarrow} \overset{C}{\leftarrow} \overset{C}{=} $		
	CH ₃ (Neopentane)		
	c) In haloarenes, NO ₂ group present at o/p position results in the stabilisation of		
	resulting carbanion by-R and - I effects and therefore increases the reactivity of haloarenes towards nucleophilic substitution reactions.	1	313
	d) 2, 2-Bis (4-chlorophenyl)-1,1,1-trichloroethane	1	318
27	a) CH ₃ COOC ₂ H ₅ + H ₂ O $\xrightarrow{H^+}$ CH ₃ COOH+ C ₂ H ₅ OH(any other suitable example)	1	102
	HY/CHEM-XII(MS)/SET-2	Page 3 of	7

Page 3 of 7

	$\frac{dx}{dt} = k [A] [B]^2$	1	
	a) 1	1	
28	c) 1 $A = \pi r^2 = 3.14 \times (0.5)^2 \text{ cm}^2 = 0.785 \text{ cm}^2$		242
	ρ (resistivity) = $\frac{R \times A}{l} = \frac{5.55 \times 10^3 \Omega \times 0.785 \mathrm{cm}^2}{50 \mathrm{cm}} = 87.135 \Omega \mathrm{cm}.$	1	
	$\kappa = \frac{1}{\rho} = \frac{1}{87.135 \Omega \mathrm{cm}} = 0.01148 \mathrm{S} \mathrm{cm}^{-1}$	1	
	$\Lambda_m = \frac{\kappa \times 1000}{M} = \frac{0.01148 \times 1000}{0.05 M} = 229.6 \text{ S cm}^2 \text{ mol}^{-1}$	1	
29	a) inversion of configuration	1	171-
	b) OMe OH	1	174
	a la	1	
	← HI → ← CH ₃ I		
	c) But-2-ene	1.1	
		1+1	
	$H_3C \longrightarrow CH_2 \longrightarrow CH_3 \xrightarrow{\text{alc KOII}} \Delta \longrightarrow H \xrightarrow{H_3C} C \longrightarrow CH_3$		
	OR a) 1-Bromopentane will be more reactive as it least crowded for an $S_N 2$ reaction.	1	
	b) 2 -Bromopentane has a chiral carbon. Therefore, it is optically active.	1	
30	a) $Zn(s) Zn^{2+}(aq) Cu^{2+}(aq) Cu (s)$	1	66,86
	b) Once the salt bridge is removed from the cell, the voltage drops to zero. No flow	1	
	of current. OR		
	The cell will behave as an electrolytic cell.		
	c) $Q = 1.5 \times 900C = 1350C$. 96500 C deposite 1 g eq. hence,		
	0.783 00000 55 07	1	
	$E=rac{0.783}{1350} imes 96500=55.97$	1	
31	a) i) The bonds between chloroform molecules and molecules of acetone are dipole-	1	43,45,
	dipole interactions but on mixing, the chloroform and acetone molecules, they		54
	start forming hydrogen bonds which are stronger bonds resulting in the release of energy. This gives rise to an increase in temperature.		
	ii) To avoid bends, as well as, the toxic effects of high concentrations of nitrogen	1	
	in the blood, the tanks used by scuba divers are filled with air diluted with		
	helium. iii) The magnitude of espectic pressure is large even for very dilute solution and it	1	
	iii) The magnitude of osmotic pressure is large even for very dilute solution and it can be measured at room temperature.(any other suitable reason)	1	
	HY/CHEM-XII(MS)/SET-2	Page 4 of	-

		1/	
	b) $\mathbf{M}_{\mathrm{B}} = \frac{\mathbf{K}_{\mathrm{f}} \times \mathbf{W}_{\mathrm{B}} \times 1000}{\Delta \mathrm{T}_{\mathrm{f}} \times \mathbf{W}_{\mathrm{A}}}$	1⁄2	
	$\Delta \Pi \wedge WA$	1/2	
	$3.83 \mathrm{K \ kg \ mol^{-1}} \times 2.56 \times 1000 \mathrm{g \ kg^{-1}}$	72	
	$M_{\rm B} = \frac{3.83{\rm Kkgmol^{-1}} \times 2.56 \times 1000{\rm gkg^{-1}}}{100{\rm g} \times 0.383{\rm K}} = 256{\rm gmol^{-1}}$		
	Now, molecular mass of $S_x = x \times 32 = 256$		
	$x = \frac{256}{32} = 8$	1/2	
	$x - \frac{1}{32} - 8$		
		1/2	
	Therefore, formula of sulphur = S_8		
	OR		51,54
	a) i)Beaker 1:Hypotonic solution, Beaker 2:Hypertonic solution	1/2+1/2	
	ii)In beaker 3 the size of potato cube remains the same because of isotonic	1	
	solution which has the same concentration of solutes as that of potato cells. So		
	water is neither lost or gained by the potato cells.		
	b) $\Delta T_f = 0 - (-0.068) = 0.068 K$	1⁄2	
	$\Delta T_{\rm f} = i \times K_{\rm f} \times m$	1/2	
	$0.068 = i \times 1.86 \times 0.01$	1⁄2	
	So, i=3.6559		
	Again, $\alpha = \frac{i-1}{n-1}$		
	for AlCl ₃ \rightleftharpoons Al ³⁺ +3Cl ⁻ ; n=1+3=4		
	$\alpha = \frac{3.6559 - 1}{4 - 1} = 0.8833$	1⁄2	
	% of dissociation = 88.33%		
	c) The freezing point of water decreases, due to which the snow on the road starts to	1	
	melt and clears the road.	1	
32			244
52	Any five: $1^2 m^3$ Monstin character Discussed	1/.1/	244, 249
	a) Hybridization: d ² sp ³ , Magnetic character: Diamagnetic	1/2+1/2	249, 252
	b) $[Cr(H_2O)_5Cl]Cl_2.H_2O$		232
	c) No, ionization isomers are possible by exchange of ligand with counter ion only	1/2+1/2	
	and not by exchange of central metal ion.		
	d) In both $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$, Ni is in +2 oxidation state with		
	configuration $3d^8$ and it contains two unpaired electrons. In $[NiCl_4]^{2-}$ due to	1	
	presence of weak ligand Cl ⁻ no pairing takes place and hence it is paramagnetic		
	whereas in $[Ni(CN)_4]^{2-}$, CN^- is a strong field ligand and pairing occurs and		
	hence it becomes diamagnetic.		
	e) $[Co(NH_3)_6]Cl_3>[Cr(NH_3)_5Cl]Cl_2>[Co(NH_3)_4Cl_2]Cl>[Co(NH_3)_3Cl_3]$	1	
		1 $\frac{1}{2} + \frac{1}{2}$	
	f) Trans isomer is optically inactive as it has a plane of symmetry	72 +72	
<u> </u>		l	

HY/CHEM-XII(MS)/SET-2

ii) $CH_3 - CH = CH_2 + (H - BH_2)_2 \longrightarrow CH_3 - CH - CH_2$ Propene Diborane $H = BH_2$	1	
\mathbf{H}_{3} -CH=CH ₂		
$(CH_3-CH_2-CH_2)_{3B} \stackrel{CH_3-CH=CH_2}{\longleftarrow} (CH_3-CH_2-CH_2)_{2BH}$ H ₂ O 3H ₂ O ₂ , OH		
3CH ₃ -CH ₂ -CH ₂ -OH + B(OH) ₃		
Propan-1-ol		
b)Ethoxyethane	1/2	
Step 1		
$CH_3-CH_2-\overset{\bullet}{O}-H+H^+ \longrightarrow CH_3-CH_2 \overset{+}{\overset{\bullet}O}-H$ Step 2	1⁄2	
$CH_{3}CH_{2} - \overset{\bullet}{O}_{H} + CH_{3} - CH_{2} \overset{\bullet}{P} \overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}}{\overset{\bullet}{\bullet$	1	
Step 3		
$CH_{3}CH_{2} \xrightarrow{O}_{H} - CH_{2}CH_{3} \longrightarrow CH_{3}CH_{2} - O - CH_{2}CH_{3} + H^{+}$	1	

HY/CHEM-XII(MS)/SET-2