ANNEXURE -A

DAV PUBLIC SCHOOLS, ODISHA ZONE

SUBJECT: - CHEMISTRY, CLASS: XI (Half Yearly) 2023-24

	BLUEPRINT OF QUESTION PAPER								
S l N o	Chapters / units	Marks Allotted in Syllabus	Sec-A VSA (MCQs) (16No.sx1)	Sec-B SA-I (5No.s.x2)	Sec-C SA-II (7No.s.x3)	Sec-D CBQ (2Nos.x4)	Sec-E LA (3Nos.x 5)	TOTAL (33No.s)	
1	SOME BASIC CONCEPTS OF CHEMISTRY	14	4	1	1		1	7	
2	STRUCTURE OF ATOM	16	4		1	1	1	7	
3	CLASSIFICATION OF ELEMENTS	12	2	2	2			6	
4	CHEMICAL BONDING	16	4	2	1		1	8	
5	THERMODYNAMICS	12	2		2	1		5	
MARKS		70	16x1=16	5x2=10	7x3=21	2x4=8	3x5=15	33	

Subject: Chemistry Class: XI Full Mark: 70 As per the syllabus the typology of question as follows:

Nos. of Questions: 33

AN, E & C -	→Allaryzing, Evaluat		$\frac{20 \text{ WARKS}}{\text{TOTAL} - 70 \text{ MARKS}}$
$APP \rightarrow$	Application	30%	21 MARKS 28 MADKS
$\mathbf{K} \otimes \mathbf{U} \rightarrow$	Remembering & UI	nderstanding 30%	21 MARKS
DOT		1 1 200/	

DAV PUBLIC SCHOOLS, ODISHA

Half-Yearly Exam.

SUBJECT: CHEMISTRY

CLASS : XI

	QUESTIONWISE ANALYSIS					
SI.		Forms of Question - (LA,	Manla	$(\mathbf{D} \mathbf{e}_{\mathbf{I}})$		
No.	Chapters / units	VSA(MCQs)	Allotted	$(\mathbf{A}\mathbf{X}\mathbf{U}),(\mathbf{A}),$ $(\mathbf{A}\mathbf{N},\mathbf{E}\boldsymbol{\&}\mathbf{C})$		
1	Some basic concepts of chemistry	(MCQs)	1	AN, E&C		
2	Structure of atom	(MCQs)	1	А		
3	Some basic concepts of chemistry	(MCQs)	1	AN, E&C		
4	Structure of atom	(MCQs)	1	А		
5	Some basic concepts of chemistry	(MCQs)	1	AN, E&C		
6	Structure of atom	(MCQs)	1	А		
7	Thermodynamics	(MCQs)	1	R & U		
8	Chemical Bonding	(MCQs)	1	R & U		
9	Chemical Bonding	(MCQs)	1	AN, E&C		
10	Classification of elements	(MCQs)	1	R & U		
11	Thermodynamics	(MCQs)	1	AN, E&C		
12	Chemical Bonding	(MCQs)	1	A		
13	Some basic concepts of chemistry	(MCQs)	1	AN, E&C		
14	Structure of atom	(MCQs)	1	AN, E&C		
15	Chemical Bonding	(MCQs)	1	AN, E&C		
16	Classification of elements	(MCQs)	1	AN, E&C		
17	Classification of elements	SA-I	2	R & U		
18	Chemical Bonding	SA-I	2	R &U		
19	Classification of elements	SA-I	2	R &U		
20	Some basic concepts of chemistry	SA-I	2	AN, E&C		
21	Chemical Bonding	SA-I	2	A		
22	Thermodynamics	SA-II	3	AN, E&C		
23	Chemical Bonding	SA-II	3	A		
24	Structure of atom	SA-II	3	AN, E&C		
25	Some basic concepts of chemistry	SA-II	3	AN, E&C		
26	Classification of elements	SA-II	3	A		
27	Thermodynamics	SA-II	3	R & U		
28	Classification of elements	SA-II	3	AN, E&C		
29	Thermodynamics	CBQ	4	A		
30	Structure of atom	CBQ	4	R & U		
31	Some basic concepts of chemistry	LA	5	А		
32	Chemical Bonding	LA	5	R & U		
33	Structure of atom	LA	5	AN, E&C		

	ANNEXURE -C					
	Half-Yearly Exam., SUBJECT CHEMISTRY CLASS :XI					
	MARKING SCHEME					
Qn. No.	Value Points	Marks Allotted	PAGE NO.OF NCERT /TEXT BOOK			
	SECTION-A		•			
1.	(d) 12 g He	1	Pg-18			
2.	(b) 2.5h/π	1	Pg- 56			
3.	(c) 46	1	Pg-23			
4.	(b) Heisenberg's uncertainty principle	1	Pg-51			
5.	(c) 34.52	1	Pg-19			
6.	(a) 6.63×10^{-24} Kg m sec ⁻¹	1	Pg-73			
7.	(d) Heat capacity	1	Pg-180			
8. 9	(b) $H_2O>HF>NH_3$ (a) 2 unpaired electrons in π_1 MO	1	Pg- 121 Pg-127			
). 10	(b) S	1	$P_{\sigma} = 127$			
11.	(b) -46.2kJ	1	Pg-160			
12	(b) sp sp^2 and sp^3	1	Exmp-39			
13.	(c) Assertion is correct, reason is incorrect	1	Pg-17			
14.	(a) Both (A) and (R) are true and (R) is correct explanation of A.	1	Pg-25			
15.	(c) Assertion is correct, reason is incorrect	1	Pg-108			
16.	(b) Both A and R are true but R is not the correct explanation of A.	1	Pg-88			
	SECTION-B					
17.	118- Ununoctium	1	Pg-80			
	Position in the modern periodic table: 7 th period and 18 th group	1/2 + 1/2				
10	(a) DE is summatrical molecula. Hance individual dinclomements concel out	72 + 72	D_{α} 112			
18.	and net dipolemoment become zero	1	Pg-112			
	(b) Due to presence of one lone pair of electrons on nitrogen and three bond pairs,	1				
	the geometry of NH_3 is tetrahedral and shape is trigonal pyramidal.					
	OR	1				
	(a) It is due to resonance.	1				
	(b) It is due to lp-lp repulsion in H_2O molecule which overcomes lp-bp repulsion in case of NH.	1				
19.	$Na_{2}O + H_{2}O \rightarrow 2NaOH(Basic)$	1	Pg-91			
	$Cl_2O_7 + H_2O \rightarrow 2HClO_4(Acidic)$	1	0			
20.	$\frac{2H_2 + O_2 \rightarrow 2H_2O}{2H_2 + O_2 \rightarrow 2H_2O}$		Pg-20			
20.	$\begin{array}{cccc} 4g & 32g & 36g \end{array}$		1 5 20			
	According to the equation, $4g H_2$ requires $32g O_2$					
	So, 3g H ₂ requires $O_2 = \frac{32 \times 3}{4} = 24g O_2$					
	Here $3g H_2$ is mixed with $29g$ of O_2 .	1				
	(i) All H_2 will react. Hence, H_2 is the limiting reagent.					
	Hence $3g$ He will give $\frac{36\times3}{2}$ - 27g HeO	1				
	$\frac{1101000,5g 112 \text{ will } g1vc - \frac{-2}{4} - 27g 1120}{4}$					

21.	No. of sigma bond=9, No of Pie bond=3	1	Pg-120
	SECTION C		
22	$CH_{3}OH(l) + 3/2O_{2}(g) \longrightarrow CO_{2}(g) + 2H_{2}O \qquad \land H^{\Theta} = -726kJmol^{-1} - (i)$		Pg-180
	$\begin{array}{ll} C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)} , & \Delta_c H^{\Theta} = -393 \text{ kJ mol}^{-1} - (ii) \\ H_{2(g)} + 1/2O_{2(g)} \longrightarrow H_2O_{(1)} , & \Delta_f H^{\Theta} = -286 \text{ kJmol}^{-1} - (iii) \end{array}$		18 100
	The desired equation is		
	$C_{(s)}+2H_{2(g)}+1/2O_{2(g)} \longrightarrow CH_{3}OH_{(l)}; \Delta_{f}H^{\Theta} = \pm? (iv)$ Multiply eqn. (iii) by 2 and add to eqn. (ii) $C_{(s)}+2H_{2(g)}+2O_{2(g)} \longrightarrow CO_{2(g)}+2H_{2}O_{(l)}$ $\Delta H = -(393 + 522) = -965 \text{ kJmol}^{-1}(v)$	1/2	
	Subtract eqn. (v) from eqn. (i) $CH_3OH_{(l)}+3/2O_{2(g)} \longrightarrow CO_{2(g)}+2H_2O_{(l)}$	1	
	: $\Delta H = -726 \text{ kJ mol}^{-1}$ (vi) Subtract eqn. (vi) from eqn. (v) :	1⁄2	
	$C(s) + 2H_{2(l)} + \frac{1}{2O_{2(g)}} \longrightarrow CH_{3}OH_{(l)};$	1	
23.	$\Delta_{\rm f} {\rm H}^{\circ} = -239 {\rm kJ mol}^{\circ}$ (a) The bond dipoles of two C=O. bonds cancel the moment of each other.	1	Pg- 137
	whereas, H_2O molecule has a net dipole moment (1.84 D). H_2O molecule has a bent structure because here the O—H bonds are oriented at an angle of 104.5° and do not cancel the bond moments of each other.		
	(b) The hybridization of B changes from sp^2 to sp^3 whereas the hybridization of N remains same i.e sp^3 .	1	
	(c) The geometry of SF ₄ molecule is a "see-saw."		
	$\stackrel{90^{\circ}}{\underset{F}{\overset{F}{\overset{F}{\overset{F}{\overset{F}{\overset{F}{\overset{F}{$	1	
24.	(a) Power of bulb, P = 25 Watt = 25 Js ⁻¹ Energy of one photon, E = $hv = hc/\lambda$ Substituting the values in the given expression of E:	1⁄2	Pg- 53,47,59
	$E = \frac{(6.626 \times 10^{-54})(3 \times 10^{6})}{(0.57 \times 10^{-6})} = 34.87 \times 10^{-20} \text{ J}$ E = 34.87 × 10 ⁻²⁰ J	1⁄2	
	Rate of emission of quanta per second = $\frac{25}{34.87 \times 10^{-20}} = 7.169 \times 10^{19} \text{ s}^{-1}$	1	
	(b) Correct statement .	1	

25.	Molecular mass = 98.96								
	Element	%	Atomic mass	Relative no. of moles	Simplest molar ratio	Simplest whole no.ratio			Pg-51
	С	24.27	12	24.27 12 = 2.02	2.02 $\overline{2.02}$ = 1	1		1	
	Н	4.07	1	$\frac{4.07}{1}$ = 4.07	$ \frac{4.07}{2.02} = 2 $	2			
	Cl	71.65	35.5	$\frac{71.65}{35.5}$ = 2.02	2.02 $\overline{2.02}$ = 1	1			
	Simple molar	ratio=1:	2:1 for C: 1	H: Cl					
	Empirical For Empirical ma	rmula= C .ss= 49.5	CH ₂ Cl					1	
	n=molecular Molecular for	$\frac{\text{mass/emp}}{\text{rmula} = r}$ $= 2$	pirical mas 1 × (Empiri 2 × (CH ₂ Cl	s=98.96/49.5= ical formula) $c_2H_4Cl_2$	2			1	
26.	 (i) Stable full filled electronic configuration (ii) N has a stable configuration since it has half-filled 2p-orbitals so it is reluctant to gain an electron. So, nitrogen has slightly positive electron gain enthalpy. (iii) Hydrogen has properties similar to the group 1 elements (alkali metals) and it also shows the properties of group 17 elements (Halogens). Hydrogen's similarity with two completely different groups of elements in the modern periodic table has made it difficult for scientists to place it in particular group and hence the position of hydrogen in the modern periodic table is not fixed. (iv) This is due to the increase in nuclear charge and decrease in atomic size, as a result of which shared electron pair can be attracted more towards itself. 					1x3	Pg-85, 87		
27.	(a) For the given $2A + B \rightarrow C$ As per the G $\Delta G = \Delta H$ - TA	reaction ibbs Helı ∆ S	, nholtz equ	ation:					Pg-184
	Assuming the reaction at equilibrium, $\Delta G=0$; So, $\Delta H=T\Delta S$ T= $\Delta H/\Delta S$						1/2		
	$T = (400 \text{ kJ mol}^{-1})/(0.2 \text{ kJ K}^{-1} \text{ mol}^{-1}) = 2000 \text{ K}$ Thus, reaction will be in a state of equilibrium at 2000 K.						1⁄2		
	reaction to be spontaneous, ΔG must be negative. Hence, for the given reaction to be spontaneous, T should be greater than 2000 K.					1			
	(b) ΔH : negative (- ve) because energy is released in bond formation ΔS : negative (- ve) because entropy decreases when atoms combine to form molecules.					1			

28.	(a) (i) All the given species contain same number of electrons (10). Hence, they	1	Pg-96
	are isoelectronic species. (ii) The increasing order of ionic radii is $Al^{3+} < Mg^{2+} < Na^{+} < F^{-} < O^{2-} < N^{3-}$	1	
	(b) Because the number of protons are more than number of electrons and hence	-	
	effective nuclear charge increases.	1	
	SECTION-D		
20		1	De
29	(a) $C_P - C_V = K$ (b) The amount of heat required to raise the temperature of 1 mole of a	1	161.163
	substance by 1 degree celcius.	-	101,100
	(c) $q = Mc\Delta T$		
	$= 1000 \times 4.18 \times 20$	1/2	
	=83600 J 83600	1/2	
		1	
	= 83.6 KJ		
	OR		
	$2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$		
	For the above reaction $\Delta n^{(g)} = 2 - (2+1) = -1$		
	$\Delta U = \Delta H - \Delta n^{(g)} R T$	1/2	
	$= -92.38 - (-1) \times (8.314 \times 298)$ = -02.38 + (8.314 \times 208)	1⁄2	
	$= -92.38 + (0.514 \times 298)$ = $-92.38 + 4.95 = -87.43 \text{kJ}$	1	
30		1 1	D _α 27
50	$ \begin{array}{c} (a) \lambda = n/mv \\ (b) Nc \end{array} $	1 1/2	1 g-27
	Because of large masses, the wavelength		
	associated with macroscopic object becomes so	1⁄2	
	short that it can not be detected.	1/	
	$(c)\lambda = h / (2mKE)^{1/2}$	1/2	
	$=\frac{6.626\times10^{-34}}{\sqrt{2\times91\times10^{-31}\times3\times10^{-25}}}$	1	
	$=1.2 \times 10^{-7} \text{m}$		
	OR		
	$P = \frac{n}{\lambda}$	1/2	
	so, here we have to use formula $\frac{P_A}{\Delta B} = \frac{\lambda_B}{\Delta B}$	1/2	
	$\overline{P_B} = \overline{\lambda_A}$		
	Given, $IB = \frac{1}{2}$		
	$\frac{P_A}{P_A} = \frac{\lambda_B}{\lambda_B}$		
	so, $P_A/2 = 5 \times 10^{-8}$	1/2	
	$\Lambda = 10^{-1}$ m bence wavelength of B is 10^{-7} m	1/2	
		, -	
	SECTION-E		
21		1.5	D
31	Molar mass of glucose $(C_6H_{12}O_6)$	1x5	Pg-
	$= 12 \times 6 + 1 \times 12 + 16 \times 6 = 180$		17,19,15
	conc. in gL^{-1} 0.90 gL^{-1}		
	Molarity = $\frac{1}{Molar mass} = \frac{1}{180 \text{ g mol}^{-1}} = 0.005 \text{ M}$		
	(b) $C_{a}CO_{2} \rightarrow C_{a}O + CO_{2}$		
	10.0 g 5.6 g 2.24L=4.4 g		
	Since, mass of reactant = Mass of product		

	So, the law of conservation of mass is obeyed.		
	(c) 0.5 mol Na ₂ CO ₃ means the quantity of weight of Na ₂ CO ₃ present whereas 0.5M Na ₂ CO ₃ means 0.5 moles of Na ₂ CO ₃ present in 1 L solution. it is a measure of quantity of Na ₂ CO ₃ in the solution		
	(d) Number of moles of solvent=1000/18=55.56 mol		
	Mole fraction of the solute $=\frac{2.5}{2.5+55.56}=0.043$		
	(e) $CaCO_3+2HCl \rightarrow CaCl_2+H_2O+CO_2$ According to the balanced reaction		
	100 g of CaCO ₃ requires 2×36.5=73 g of HCl 50 g CaCO ₃ requires:= 73/100×50=36.5 g HCl		
	(f) 14 gm of Nitrogen has higher volume		
32.	(a)The octet rule states that atoms tend to form compounds in ways that give them eight valence electrons and thus the electronic configuration of a noble gas.	1	Pg- 135,105,1 29
	 (i) Incomplete octet: In certain molecules such as BeH₂, BeCl₂, BH₃, BF₃, the central atom has less than 8 electrons in its valence shell, yet the molecule is stable 		2)
	 (ii) Expanded octet: In certain molecules such as PF₅, SF₆, IF₇, H₂SO₄, the central atom has more than 8 valence electrons, yet the molecule is stable. (iii) Odd electron species: In certain molecules such as NO₂, the central atom has one odd electron. 	1+1	
	 (iv) Xe being a noble gas also forms compounds like XeF₄, XeF₆ (v) It failed to explain the relative stability of molecules. (vi) The shape of the molecule is not predicted by the octet rule. 		
	(b) Lewis structure of O_3 is	1/2	
	$1 \qquad 3$ $0 \qquad 0$	1/2	
	Formal charge on $O(1) = 6 - 4 - \frac{1}{2}$ (4) = 0	1/2	
	Formal charge on O(2) = $6 - 2 - \frac{1}{2}(6) = +1$	1/2	
	Formal charge on O(3) = $6 - 6 - \frac{1}{2}$ (2) = -1 .		
	OR	1/2	
	(a) N ₂ : $\sigma 1s^2$, $\sigma * 1s^2$, $\sigma 2s^2$, $\sigma * 2s^2$, $\pi 2p_x^2 = \pi 2p_y^2$, $\sigma * 2p_z^2$ Bond Order = $\frac{N_b - N_a}{2} = \frac{10 - 4}{2} = 3$	1/2	
	O ₂ : $\sigma 1s^2$, $\sigma * 1s^2$, $\sigma 2s^2$, $\sigma 2s^2$, $\sigma 2p_z^2$, $\pi 2p_x^2 = \pi 2p_y^2$, $\pi 2p_x^1 = \pi 2p_y^1$ Bond Order $= \frac{N_b - N_a}{2} = \frac{10 - 6}{2} = 2$	1/2	
	$O_{2}^{+}: \sigma 1s^{2}, \sigma * 1s^{2}, \sigma 2s^{2}, \sigma * 2s^{2}, \sigma * 2p_{z}^{2}, \pi 2p_{x}^{2} = \pi 2p_{y}^{2}, \pi * 2p_{x}^{1}$ Bond Order = $\frac{N_{b} - N_{a}}{2} = \frac{10 - 5}{2} = 2.5$	1⁄2	
	$O_2: \sigma 1s^2, \sigma * 1s^2, \sigma 2s^2, \sigma * 2s^2, \sigma * 2p_z^2, \pi 2p_x^2 = \pi 2p_y^2, \pi * 2p_x^2 = \pi * 2p_y^1$ Bond Order = $\frac{N_b - N_a}{2} = \frac{10 - 7}{2} = 1.5$	1	
	Increasing order of stability $O_2^- < O_2 < O_2^+ < N_2$ (b) Any two difference.	2	

33.	(a) (i)n=5	1	Pg- 70,41,70,
	(ii) $\xrightarrow{z} x$	1	61,59
	(b) (i) $1s^22s^22p^63s^23p^6$ Number of unpaired electrons=0	1 . 1	
	(ii) $1s^22s^22p^63s^23p^64s^23d^3$ Number of unpaired electrons=3	1+1	
	$(c)\frac{(n_2 - n_1)(n_2 - n_1 + 1)}{(2 - n_1)(2 -$	1⁄2	
	$=\frac{(7-2)(7-2+1)}{2} = \frac{5\times 6}{2} = 15 \ lines$		
	OR		
	(a) Energy for hydrogen electron present in a particular energy shell,	1	
	$E_n = -\frac{-2.18 \times 10^{-18}}{n^2} J \ atom^{-1}$	1	
	Ionisation energy for hydrogen electron present in orbit n = 5 is IE ₅ = $E_{\infty} - E_5 = 0 - \left(\frac{-2.18 \times 10^{-18}}{25}\right) J \ atom^{-1} = 8.72 \times 10^{-20} J \ atom^{-1}$		
	(b) (i) $n-l-1 = 3-1-1 = 1$ (ii) $l = 2$	1+1	
	(c) Electron bearing quantum numbers:n=4, l=3 will have the lower energy because of lower n value making it closer to nucleus	1	